

 FINAL PROJECT REPORT FOR INVENTORY
CONTROL SYSTEM FOR THE

CALCULATION AND ORDERING OF
AVAILABLE AND PROCESSED RESOURCES
GROUP 9

V SIMANT PUROHIT

V AKSHAY THIRKATEH
V BARTLOMIEJ MICZEK

V ROBERT FAIGAO

December 7, 2012

1

ACKNOWLEDGEMENTS

We would like to thank Ms. Kimberly Harmon for her professional input, feedback, and support, as

well explaining the need required to make our product a successful one. Her experience in the

restaurant industry proved fruitful and extensive when it came to the project requirements and

development. We all eat at restaurants, but no one realized that the amount of work that chefs do

goes beyond simply cooking the meal.

We would also like to thank Professor John Bell and his teaching assistant, Munavvar Khan, for

their continued guidance and feedback throughout the course of the project.

2

TABLE OF CONTENTS
1 PROJECT OVERVIEW .. 9

1.1 THE PURPOSE OF THE PROJECT .. 9
1.2 GOALS OF THE PROJECT .. 9
1.3 THE DOMAIN .. 9
1.4 THE CLIENT .. 10
1.5 USER OF THE PRODUCT ... 10
1.6 OBJECTIVES AND SUCCESS CRITERIA OF THE PROJECT ... 11

2 SYSTEM ARCHITECTURE OVERVIEW (DEVELOPMENT ENVIRONMENT) .. 12

2.1 FRONT END ... 12
2.2 BACK END ... 12
2.3 BASIC DATABASE RELATIONSHIP DIAGRAM... 13
 ... 13
2.4 ASSIGNMENT OF RESPONSIBILITIES .. 13

3 REQUIREMENTS ANALYSIS .. 14

3.1 FUNCTIONAL REQUIREMENTS .. 14
3.2 NON-FUNCTIONAL REQUIREMENTS ... 14
3.3 USE CASE MODEL .. 17
3.4 USE CASES ... 18

3.4.1 Update Resource Database.. 18
3.4.2 Check Threshold Use Case .. 19
3.4.3 Process Order Use Case .. 20
3.4.4 Add Recipe Use Case .. 21
3.4.5 Update Recipe Use Case .. 22
3.4.6 Remove Recipe Use Case ... 23
3.4.7 Add Occasion Use Case .. 24
3.4.8 Update Inventory Use Case .. 25
3.4.9 Correct Inventory Use Case .. 26
3.4.10 Add Vendor Use Case... 27
3.4.11 Remove Vendor Use Case .. 28
3.4.12 Add Ingredients Use Case .. 29

3.5 MULTIPLICITY AND ASSOCIATION DIAGRAMS ... 30
3.5.1 Multiplicity Diagram .. 30
3.5.2 Association Diagram .. 30

3.6 DYNAMIC MODEL ... 31
3.6.1 Update Resource Database Sequence Diagram .. 31
3.6.2 Add Recipe Sequence Diagram .. 32
3.6.3 Remove Recipe Sequence Diagram .. 32
3.6.4 Update Recipe Sequence Diagram ... 33
3.6.5 Add Vendor Sequence Diagram ... 34
3.6.6 Remove Vendor Sequence Diagram ... 34
3.6.7 Update Inventory Sequence Diagram .. 35
3.6.8 Correct Inventory Sequence Diagram .. 36
3.6.9 Add Occasion Sequence Diagram .. 36

3

4 DETAILED SYSTEM DESIGN .. 37

4.1 DESIGN GOALS ... 37
4.2 SUBSYSTEM DECOMPOSITION .. 39
4.3 HARDWARE SOFTWARE MAPPING .. 42
4.4 PERSISTENT DATA MANAGEMENT .. 43

4.4.1 Persistent Objects .. 43
4.4.2 Storage Strategy .. 43

4.5 ACCESS CONTROL AND SECURITY .. 44
4.5.1 Access Matrix ... 44

4.6 GLOBAL SOFTWARE CONTROL ... 45
4.9 OBJECT DESIGN TRADEOFFS .. 48
4.10 INTERFACE DOCUMENTATION GUIDELINES ... 49

4.11.1 IngredientPackage: .. 51
4.11.2 MiscPackage: ... 51
4.11.3 RecipePackage: .. 52

4.12 CLASS INTERFACES ... 53
4.12.1 Class Ingredient ... 54
4.12.2 Class AddIngredient ... 54
4.12.3 Class Recipe ... 55
4.12.4 Class Vendor .. 56
4.12.5 Class Prediction.. 57
4.12.6 Class AddRecipe ... 57
4.12.7 Class RemoveRecipe .. 58
4.12.8 Class UpdateRecipe ... 58
4.12.9 Class Updates .. 59
4.12.10 Class Occasion ... 60
4.12.11 Class Orders ... 60

5 TESTING ... 61

5.1 FEATURES TO BE TESTED/NOT TO BE TESTED ... 61
5.1.1 Features to be tested ... 61
5.1.2 Features not to be tested ... 62

5.2 PASS/FAIL CRITERIA... 63
5.3 APPROACH ... 63
5.4 SUSPENSION AND RESUMPTION .. 64

5.4.1 Suspension ... 64
5.4.2 Resumption .. 64

5.5 TESTING MATERIALS (HARDWARE/SOFTWARE REQUIREMENTS) .. 65
5.5.1 Software requirements .. 65

5.6 TEST CASES .. 66
5.6.1 Test case 1: Testing the Add Recipe Interface and its functioning ... 66

5.6.1.1 Test case specifications for Test case 1: Testing the Add Recipe Interface and its functioning 66
5.6.1.2 Preliminary test results for test case 1 .. 69

5.6.2 Test case 2: Logging in to the system .. 70
5.6.2.1 Test case specifications for Test case 2: Logging in to the system .. 70
5.6.2.2 Preliminary test results for test case 2 .. 70

5.6.3 Test Case 3: Testing the Add Ingredient Interface of the system ... 71
5.6.3.1 Test case specifications for Test case 3: Testing the Add Ingredient Interface of the system 71
5.6.3.2 Preliminary test results for test case 3 .. 74

4

5.6.4 Test Case 4: Testing the Add vendor Interface of the system .. 75
5.6.4.1 Test case specification for test case 4: Testing the Add vendor Interface of the system.............................. 75
5.6.4.2 Preliminary Test Results for test case 4 .. 77

5.6.5 Test Case 5: Check Threshold Interface .. 78
5.6.5.1 Test case specification for test Case 5: Check Threshold Interface ... 78
5.6.5.2 Preliminary Test Reports for test case 5 ... 79

5.6.6 Test Case 6: Testing the Update after sales interface .. 80
5.6.6.1 Test case specification for test Case 6: Testing the update after sales interface .. 80
5.6.6.2 Preliminary test results for test case 6 .. 81

5.6.7 Test Case 7: Testing the Update After receiving interface ... 82
5.6.7.1 Test case specification for Test case 7: Testing the update after receiving interface 82
5.6.7.2 Preliminary Test Results for test case 7 .. 83

5.7 COMPONENT INSPECTION ... 84
5.7.1 Inspection of Check Threshold ... 84

5.7.1.1 Overview ... 84
5.7.1.2 Preparation ... 84
5.7.1.3 Inspection Meeting ... 84
5.7.1.4 Rework .. 84
5.7.1.5 Follow up... 85

5.7.2 Inspection of Add Vendor ... 85
5.7.2.1 Overview ... 85
5.7.2.2 Preparation ... 85
5.7.2.3 Inspection Meeting ... 85
5.7.2.4 Rework .. 85
5.7.2.5 Follow up... 85

6 CONCLUSION: .. 86

7 PROCESS IMPROVEMENT: ... 87

8 FUTURE DEVELOPMENT... 88

9 BIBILIOGRAPHIC REFERENCES: ... 89

10 GLOSSARY ... 90

11 APPENDIX .. 91

11.1 TEST RESULTS FOR TEST CASE 1 ... 91
11.2 TEST RESULTS FOR TEST CASE 2 .. 93
11.3 TEST RESULTS FOR TEST CASE 3 .. 94
11.4 TEST RESULTS FOR TEST CASE 4 .. 97

5

LIST OF FIGURES

FIGURE 1: FRONT END ... 12
FIGURE 2: BACK END... 12
FIGURE 3: RESPONSIBILITIES ... 13
FIGURE 4: USE CASE MODEL .. 17
FIGURE 5: MULTIPLICITY DIAGRAM .. 30
FIGURE 6: ASSOCIATION DIAGRAM .. 30
FIGURE 7: UPDATE RESOURCE DATABASE SEQUENCE DIAGRAM .. 31
FIGURE 8: ADD RECIPE SEQUENCE DIAGRAM ... 32
FIGURE 9: REMOVE RECIPE SEQUENCE DIAGRAM ... 32
FIGURE 10: UPDATE RECIPE SEQUENCE DIAGRAM .. 33
FIGURE 11: ADD VENDOR SEQUENCE DIAGRAM ... 34
FIGURE 12: REMOVE VENDOR SEQUENCE DIAGRAM ... 34
FIGURE 13: UPDATE INVENTORY SEQUENCE DIAGRAM .. 35
FIGURE 14: CORRECT INVENTORY SEQUENCE DIAGRAM ... 36
FIGURE 15: ADD OCCASION SEQUENCE DIAGRAM .. 36
FIGURE 16: SUBSYSTEM DECOMPOSITION ... 39
FIGURE 17: DEPLOYMENT DIAGRAM .. 42
FIGURE 18: SERVICES DIAGRAM .. 47
FIGURE 19: ATTRIBUTES NAMING CONVENTION ... 49
FIGURE 20: PACKAGES DIAGRAM .. 51
FIGURE 21: OVERALL CLASS DIAGRAM ... 53
FIGURE 22: CLASS INGREDIENT ... 54
FIGURE 23: CLASS ADDINGREDIENTS .. 54
FIGURE 24 : CLASS RECIPE ... 55
FIGURE 25: CLASS VENDOR .. 56
FIGURE 26: CLASS PREDICTION ... 57
FIGURE 27: CLASS ADDRECIPE .. 57
FIGURE 28: CLASS REMOVERECIPE .. 58
FIGURE 29: CLASS UPDATERECIPE ... 58
FIGURE 30: CLASS UPDATES ... 59
FIGURE 31: CLASS OCCASION ... 60
FIGURE 32: CLASS ORDERS... 60

file:///C:/Users/Simant/Desktop/vERSION%201.docx%23_Toc342635371
file:///C:/Users/Simant/Desktop/vERSION%201.docx%23_Toc342635373
file:///C:/Users/Simant/Desktop/vERSION%201.docx%23_Toc342635374

6

LIST OF TABLES

TABLE 1: UPDATE RESOURCE DATABASE __ 19
TABLE 2: CHECK THRESHOLD USE CASE ___ 19
TABLE 3: PROCESS ORDER USE CASE ___ 20
TABLE 4: ADD RECIPE USE CASE __ 21
TABLE 5:UPDATE RECIPE USE CASE __ 22
TABLE 6:REMOVE RECIPE USE CASE ___ 23
TABLE 7: ADD OCCASION USE CASE ___ 24
TABLE 8: UPDATE INVENTORY USE CASE __ 25
TABLE 9: CORRECT INVENTORY USE CASE__ 26
TABLE 10: ADD VENDOR USE CASE __ 27
TABLE 11: REMOVE VENDOR USE CASE ___ 29
TABLE 12: ADD INGREDIENTS USE CASE __ 29
TABLE 13: SUBSYSTEM DESCRIPTION ___ 41
TABLE 14: ACCESS MATRIX ___ 44
TABLE 15: EXCEPTION CASES __ 46
TABLE 16: FEATURES TO BE TESTED __ 62
TABLE 17: FEATURES NOT TO BE TESTED __ 62
TABLE 18: TEST CASE SPECIFICATIONS FOR TEST CASE 1: TESTING THE ADD RECIPE INTERFACE AND ITS FUNCTIONING _____________ 68
TABLE 19: PRELIMINARY TEST RESULTS FOR TEST CASE 1 __ 69
TABLE 20: TEST CASE SPECIFICATIONS FOR TEST CASE 2: LOGGING IN TO THE SYSTEM __________________________________ 70
TABLE 21: PRELIMINARY TEST RESULTS FOR TEST CASE 2 __ 70
TABLE 22: TEST CASE SPECIFICATIONS FOR TEST CASE 3 __ 73
TABLE 23: PRELIMINARY TEST RESULTS FOR TEST CASE 3 __ 74
TABLE 24: TEST CASE SPECIFICATION FOR TEST CASE 4: TESTING THE ADD VENDOR INTERFACE OF THE SYSTEM _________________ 76
TABLE 25: PRELIMINARY TEST RESULTS FOR TEST CASE 4 ___ 77
TABLE 26: TEST CASE SPECIFICATION FOR TEST CASE 5 ___ 78
TABLE 27: PRELIMINARY TEST REPORTS FOR TEST CASE 5 ___ 79
TABLE 28: TEST CASE SPECIFICATION FOR TEST CASE 6: TESTING THE UPDATE AFTER SALES INTERFACE _______________________ 81
TABLE 29: PRELIMINARY TEST RESULTS FOR TEST CASE 6 __ 81
TABLE 30: TEST CASE SPECIFICATION FOR TEST CASE 7: TESTING THE UPDATE AFTER RECEIVING INTERFACE ____________________ 83
TABLE 31: PRELIMINARY TEST RESULTS FOR TEST CASE 7 ___ 83

7

EXECUTIVE SUMMARY

At the end of their day, chefs and managers in the restaurant industry spend a couple of hours

counting inventory and placing orders for the following week. The Restaurant Inventory Control

System is designed to not only assist in this problem, but also automate many of the tedious tasks

associated with it. The system keeps track of current inventory levels for recipes at the ingredient

level, predicts how much inventory is needed for the upcoming week, and generates order forms

to that can be automatically sent to vendors.

After meeting with a chef for Guckenheimer, an on-site corporate restaurant management

company, we were very easily able to pinpoint issues in the maintenance of resource requirement

lists. To keep track of their inventory levels, staff had to calculate a list of groceries utilized during

a course of time, calculate and analyze the requirements for the future, and place their next order

to multiple vendors if needed. This process takes up a lot of time and human effort, and is also

prone to human error. The same chef used to be the head chef at Vintage 338, a privately owned

Chicago wine bar, where they had the same issues.

It became our goal to develop a program that can be used by both large corporations as well as

small businesses. This meant the system had to provide an efficient and simple user interface that

at the same time is capable of more precise changes and inputs. The system had to also be

accurate and reliable in terms of the database design. Since all of the data and data objects are

stored in a database, it was imperative that these requirements were met.

The basic functionality underlying the system is as follows: chefs can add recipes to the database,

which are then broken down to their ingredient level. These ingredients are then tracked by the

system and updated with each sale of certain items. Should they reach a predetermined threshold

level, the manager is notified and given the option to place an order with the respective vendor.

Through the use of a prediction algorithm, the system uses data such as previous sales, future

dining events, and special requests to determine order quantities. The manager has control over

all factors associated with the system, should they require a change.

Certain functional requirements that were brought up during our case study by the chefs included

allowing the user to be able to create, delete, and update recipes, ingredients, and vendors as

these changed frequently. They also stated that the system must include mechanisms for the

manager to approve any outgoing orders in case manual changes needed to be made, as well as

allow changes to be made to inventory levels in case of an error.

8

The system offers very precise control over the database, allowing the manager to add, remove,

and update the recipes, ingredients, vendors, and future events. It also include important

functionalities of predicting future inventory needs by accounting for thing such as past sales,

upcoming events, and unique ingredients that may be needed for a special occasion or recipe.

Once the manager confirms and if necessary, updates order requests, forms are generated to

specific vendors that can be easily mailed out.

The Restaurant Inventory Control System was originally designed to be a Windows application

developed in Visual Basic (for the user interface and logic) to store data in a SQL Server, but a

decision to switch to Java and Java Database Connectivity (JDBC) was made during the

development phase due to simpler and more versatile deployment.

¢ŜǎǘƛƴƎ ǿŀǎ ŎƻƳǇƭŜǘŜŘ ǘƻ ŜƴǎǳǊŜ ǘƘŀǘ ƛƴŎƻǊǊŜŎǘ ǳǎŜǊ ƛƴǇǳǘǎ ǿŜǊŜƴΩǘ ŀŘŘŜŘ ǘƻ ǘƘŜ ŘŀǘŀōŀǎŜΦ !ƴȅ

incorrect information in the database would cause a trickle effect of issues throughout the entire

system, which is heavily dependent on the data. We also tested each subsystem individually to

ensure that the requirements set for the project were achieved.

The system was successful in accurately maintaining the inventory levels, predicting the

requirements of the next order, relating recipes to their respective ingredients, and provided a

simple and effective user interface to update inventory levels and place orders to vendors.

As always, there do exist improvements for the system, given that a system of this scale would

still be considered in early stages of development. The prediction algorithm can be enhanced

further, but that would only be possible with large sets of data analysis that would be unique to

each company using the product. We have to keep in mind that although we have encompassed

the restaurant industry as a whole in the scope of this system, that industry itself can be broken

down into multiple layers. Each of these layers would have its own specific requirements of

dealing with inventory control. Also considering the large technological movement, access to the

program through a web application would be ideal for remote access to the program and

database. This would require a dedicated server to host the database and dedicated web

development and therefore has been considered as an optional enhancement.

The program completes a task that some may deem trivial, but many chefs would greatly

appreciate to have in their own work environments. Not only does it reduce the workload on chefs

that need to keep track of every ingredient used, it also automates a task as simple as sending a

food item order. Although the final product is not yet complete for wide distribution, we are

confident that we have successfully fulfilled an important need of data management in the

restaurant industry. What was once the manual labor of counting and ordering, as well as the

mental labor of memorizing all ingredients used in a recipe was digitalized and streamlined into

a process that can be used efficiently and reliably.

9

1 PROJECT OVERVIEW

1.1 THE PURPOSE OF THE PROJECT
A case study at ‘Guckenheimer’ (an on-site corporate restaurant management and catering company)

cited issues regarding a basic resources requirement list that has to be maintained manually by the staff.

To keep track of their inventory levels they have to calculate a list of the groceries utilized during a course

of time, calculate and analyze the requirements for the future, and place their next order to the vendors

if needed. This process takes up a lot of time and human effort, and is also prone to human error.

This poses a problem of a situation that the staff at ‘Guckenheimer,’ as well as many other restaurants

faces. It takes up a lot of time to manually keep track of sales and place correct orders to vendors, wasting

useful labor in trivial works. A product which would assist in tackling the above mentioned problems

would prove to be fruitful to clients such as ‘Guckenheimer’ and similar enterprises as this product would

help convert the unproductive time to something more useful, by removing the unnecessary error prone

complications and efforts.

1.2 GOALS OF THE PROJECT
The project aims at providing an efficient interface to the restaurants for managing their grocery inventory

based on each item sold. The basic idea involved here is that each item is linked to its atomic ingredients

which are stored in a database. At the end of each day, the system analyzes the total sale of menu items

and proportionately deducts appropriate amount from the resource database. Then it compares the

current available resources with the threshold level of each ingredient. If it finds that certain ingredients

are below the threshold, it will generate a purchase order for those item(s) and send it to the manager

(admin) for approval.

We also propose to include a special feature “Prediction”. This feature keeps track of any upcoming

occasions, climatic changes and special events that may influence inventory needs for the upcoming week.

The system will then predict the required resources for these events based on previously accumulated

information/knowledge. It will now generate an updated purchase order in accordance with the

predictions.

The product also aims to keep track of the shelf life of resources. If any resource nears the end of its shelf

life, it would intimate to the manager (admin) the details of the quantity that is near its expiration date.

The restaurant must function efficiently, the groceries must be tracked correctly, timely orders must be

sent out to the vendors, and the inventory must be maintained and updated at all times.

1.3 THE DOMAIN
This proposed project aims at inventory control in the restaurant and catering Industry. Such a large

domain would result in an equally as large scope of development. As a result we narrow our software

down to our case study of an outlet of Guckenheimer concentrating only on the basic resources utilized

in inventory control of the outlet. Although the software will be developed keeping in mind the needs of

10

Guckenheimer and available data at first, then applying it to the larger domain of the entire restaurant

industry can be achieved with ease.

Our target domain is full of software to track sales of food items, but lacks in this area of inventory

management. Our software can be scaled from large corporate dining all the way to small privately-owned

restaurants. It is also fairly domain specific: the database runs off recipes which generate the necessary

ingredients. It also updates the inventory based off of the sale of those recipes. This requirement focuses

our product to our domain and makes it more appealing to those looking for a solution to this specific

problem.

1.4 THE CLIENT
The client can vary from private restaurant owners to corporate restaurant management companies, such

as Guckenheimer (www.guckenheimer.com). A corporate restaurant management company that starts

up, staffs, and oversees the everyday workings of a corporate restaurant, such as the one in the Groupon

Chicago office. As stated above, while our product can be applied to the entire domain of the restaurant

and catering business, focusing on a specific business provides us with more precise and consistent data.

A company such as Guckenheimer would be an ideal client, as they staff multiple corporate kitchens across

the nation. A large scale company such as this this can apply our software to each and every kitchen,

cutting down costs on a very large scale.

Our software will allow our client to customize the database to suit the needs of each kitchen individually.

They can vary in recipes, vendors from which they order their products, and threshold levels. This provides

a uniform product that can be customized at a smaller scale. Our client would need to purchase multiple

licenses, or more likely a corporate subscription that would allow them to use the software in multiple

kitchens. We would also offer single use licenses to appeal to restaurants that only need to manage a

single inventory of goods.

1.5 USER OF THE PRODUCT
The main users of the product would be kitchen management and staff. The management would approve

the orders that would be sent out, provide vendor information, upload recipes, and set threshold levels.

Many of these tasks, such as the information regarding vendors, recipes, and threshold levels would need

to be set only once. Of course, the option to add, remove, or update this data would be implemented as

well. Once this initial step has been taken, our software will require nothing more than a weekly approval

for the orders being sent out, minimizing the work that management has to complete in order to insure

the correct amount of inventory is available.

Kitchen staff would be responsible for updating the amount of product sold at the end of the day. Each

day, the register prints out the products sold and the quantity of each product sold. Instead of manually

subtracting that amount from the inventory, they input the amounts sold into our software which will do

the number crunching for them. This data is also stored into the “predictions” feature for future use.

11

1.6 OBJECTIVES AND SUCCESS CRITERIA OF THE PROJECT
The objective of the project is to provide an efficient inventory control whose main functionality apart

from calculating the inventory include predicting the requirement for the next order and also if there is a

“Special Occasion” then accordingly the manager selects the particular occasion and extra requirements

is added to the next issuing order to the vendors which needs to be approved by the manager. The product

also aims to keep track of the shelf life of resources. If any resource nears the end of its shelf life, it would

intimate to the manager (admin) the details of the quantity that is near its expiration date.

The success criteria depends on

V The accuracy in maintaining the inventory levels

V The accuracy in predicting the requirements of the next order

V The accuracy in relating recipes to their respective ingredients

V Ease of use when it comes to updating inventory levels and placing orders to vendors

12

2 SYSTEM ARCHITECTURE OVERVIEW (DEVELOPMENT ENVIRONMENT)

2.1 FRONT END

Figure 1: Front End

2.2 BACK END

Figure 2: Back End

ÅGUI Design

ÅControl Design

ÅDatabase Connectivity

Java / Java Swing / JDBC

M
y
S

Q
L

Design Tables

Recipe Table

Ingredients Table

Vendors Table

Design Forms

Add/update/delete
Recipe

Add/update/delete
Vendors

Sales report form

13

2.3 BASIC DATABASE RELATIONSHIP DIAGRAM

2.4 ASSIGNMENT OF RESPONSIBILITIES

Ingredients

-Threshold

-Available Resources

Recipe

Vendors

*

1

*

1

Java

GUI Design Akshay

Modelling Bart

Control
Design

Simant

My SQL

Design
Tables

Bob

Design
Forms

Simant

Figure 3: Responsibilities

14

3 REQUIREMENTS ANALYSIS

3.1 FUNCTIONAL REQUIREMENTS
V The user must have, at disposal, functions for managing the inventory efficiently.

V The functions for inventory management should allow the user to know which ingredients in

the inventory are below their threshold levels and need attention.

V The system must include functions that will allow the user to add a recipe, ingredient, vendor

to the database.

V The user should also be able to delete any recipe from the database when not needed.

V The system must allow the user to create orders for the ingredients that are below threshold.

V The system must include a mechanism for the user so that the user can just update the sales

of the day in the system and the system deducts the corresponding amount of ingredient

quantity from the inventory. Thus keeping a track of ingredients.

V The system must also include functions for the user to add special days in the system when

the inventory usage will be more than usual or less than usual and thus provide a way to alert

the user of the possibility of over usage or under usage or certain ingredients.

V The system also must provide a prediction function to the user where the system will give the

user the predicted usage of inventory of certain pre-set days.

V The system must have a password protected access system such that only people with

authenticated credential are allowed to access the function of the system.

3.2 NON-FUNCTIONAL REQUIREMENTS
V Usability

i. The system must be easy to use by both managers and chefs such that they do not need

to read an extensive amount of manuals.

ii. The system must be quickly accessible by both managers and chefs.

iii. The system must be intuitive and simple in the way it displays all relevant data and

relationships.

iv. The menus of the system must be easily navigable by the users with buttons that are easy

to understand.

**Note: For detailed Requirements, refer to the Requirement Analysis Document [9].

15

V Reliability

i. The System must give accurate inventory status to the user continuously. Any

inaccuracies are taken care by the regular confirming of the actual levels with the levels

displayed in the system.

ii. The System must successfully add any recipe, ingredients, vendors or special

occasions given by the user and provide estimations and inventory status in

relevance with the newly updated entities.

iii. The system must provide a password enabled login to the user to avoid any foreign

entity changing the data in the system.

iv. The system should provide the user updates on completion of requested processes and if

the requested processes fail, it should provide the user the reason for the failure.

v. The system should not update the data in any database for any failed processes.

V Performance

i. The system must not lag, because the workers using it don’t have down-time to wait for

it to complete an action.

ii. The system must complete updating the databases, adding of recipe, ingredient,

vendor and occasions successfully every time the user requests such a process.

iii. All the functions of the system must be available to the user every time the system is

turned on.

iv. The calculations performed by the system must comply according to the norms set by the

user and should not vary unless explicitly changed by the user.

V Supportability

i. The software is designed such that it works even on systems having the minimum

configuration.

ii. The system is adaptable even if additional plugins or modules are added at a later point.

iii. The data can be exported to the manager so as to make the system more portable.

16

V Packaging

i. The system must be able to run on the Windows operating systems beginning with

Windows XP, and must be able to run on future releases such as the upcoming

Windows 8

ii. The software must incorporate a license key authentication process.

iii. The packaging must come with a manual that details the use of the system, and also the

instructions on how to use the program. This manual may be included either in a booklet

that comes with the software, or on the disc that the software itself is on.

17

3.3 USE CASE MODEL

Figure 4: Use Case Model

18

3.4 USE CASES

3.4.1 Update Resource Database

Usecase name UpdateResourceDatabase

Participating

Actors

Initiated by Manager(admin)

Flow of events 1. The Manager activates the update resource database function.

 2. The System presents a form to the Manager. The form asks for details of

the sold food items during the course of the week and the corresponding quantity

of the food sold.

3. The Manager inputs the data of the sold food for the week and the quantity that

was sold and presses Ok button.

 4. The System reads the sold food data and then further reads, from the

ingredients database, the ingredients that were used in making of the food items

that were sold.

 5. The System now calculates the amount of resources used and will deduct

the amount of ingredients that were used up from the resource database.

 6. The System now invokes the CheckThreshold usecase.

Entry condition The Manager(admin) is logged on to the System

Exit condition If the process was successful, the Manager receives an acknowledgement that the

process was completed successfully.

OR

If the process was not successful, the Manager will receive an explanation of what

error had occurred during the process.

19

Quality

Requirements

The update process must complete successfully and without errors.

Table 1: Update Resource Database

3.4.2 Check Threshold Use Case

Usecase name CheckThreshold

Participating

actors

Initiated by UpdateResourceDatabase usecase Or by AddOccasion usecase

Flow of Events 1. The System now compares the current levels of the resources with the threshold

levels of the resources. It now lists all the ingredients that are below the threshold

level, along with the predicted usage of the ingredients and presents it to the

Manager.

2. The Manager can now send out orders by pressing the Process order button. This

action invokes the processOrder usecase.

3. If Manager presses cancel, no orders are processed.

Entry

Conditions

The manager is logged on to check the inventory levels at the interval of a certain

time period.

Exit Conditions The inventory levels are checked and the appropriate action is taken.

Quality

Requirements

The system correctly calculates the correct threshold differences

Table 2: Check Threshold Use Case

20

3.4.3 Process Order Use Case

Use case name ProcessOrder

Participating

Actors

Initiated by the Manager

Flow of events 1. The System now gathers a list of vendors from whom the corresponding ingredients are

ordered. The System now matches the corresponding ingredients with the vendors from

whom ingredients are available.

Entry Condition The user is logged into the system

Exit Conditions 1. The Manager approves the order and receives an acknowledgement of the orders being

sent.

2. If the orders are not sent out successfully after pressing the approveOrder button, the

Manager receives a message that the orders were not sent out.

3. The Manager presses the cancelOrder button.

Quality

Requirements

The order is sent to the correct vendor

Table 3: Process Order Use Case

Loop

2. The System now creates an order and then presents order summary form

to the Manager. The form has three options on it, one to approve the order,

the other to revise the order and one to cancel the order]

3. The Manager, at this point can approve the generated order. The Manager

can do this by pressing the approveOrder button on the order summary form.

This will send the generated orders to the vendors. The Manager receives

the acknowledgment of the reception of the order and the process ends.]

4. The Manager can also choose to revise the order and enter the quantities

to be ordered manually for every corresponding ingredient. The Manager

can do so by choosing the reviseOrder button. An updated order summary

form is presented to the Manager and the flow returns back to point 2].

5. The Manager can also choose to cancel the order by pressing the

cancelOrder button. In this case the generated order is cancelled and no

orders are sent out.]

21

3.4.4 Add Recipe Use Case

Usecase name AddRecipe

Participating

Actors

Initiated by Manager

Flow of events 1. The Manager activates the “Create New Recipe” function on his/her terminal

2. The System responds by presenting a form to the Manager. The form asks for

details associated with the recipe.

3. The Manager completes the form by inserting ingredients to be used in the new

recipe. It also adds any new ingredient used in the recipe by executing the

addIngredient usecase which extends this usecase. The Manager also inputs the

amount of ingredient to be used in a single order of the recipe. After the form has

been completed the Manager submits the form to the System.

4. The System acknowledges that the new recipe has been created. It also adds it to

the recipe database and any new ingredient to the ingredient database.

Entry condition The Manager is logged into System

Exit condition The Manager has received an acknowledgment from the System.

 OR

The Manager has received an explanation of why the process couldn’t be completed.

Quality

Requirements

This use case is extended by the AddIngredient use case.

The process must complete successfully with the new recipe added to the recipe

database without any errors.

Table 4: Add Recipe Use Case

22

3.4.5 Update Recipe Use Case

Usecase name UpdateRecipe

Participating

Actors

Initiated by Manager

Flow of events 1. The Manager activates “Update Recipe” on system.

2. System responds by bringing up list of recipes.

3. The Manager selects a recipe to change.

4. System now shows a updateRecipe form with the list of ingredients in the recipe

and corresponding amount.

5. The Manager changes the recipe by adding/removing ingredients or updating the

amount of ingredients used in the recipe. The Manager can also add new ingredients

that are not available currently by invoking the AddIngredient usecase.

6. The Manager then finishes the update by pressing the finish button on the system.

7. The System confirms that the change has been made and updates the databases.

Entry condition The Manager is logged into System

Exit condition The Manager receives an acknowledgment from the System,

 OR

The Manager has received an explanation of why the process couldn’t be complete.

Quality

Requirements

1) This usecase is extended by the AddIngredient use case.

2) The update process must be complete successfully without any errors.

Table 5:Update Recipe Use Case

23

3.4.6 Remove Recipe Use Case

Usecase name RemoveRecipe

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Remove Recipe” function on his/her terminal.

2. The System responds by showing the current list of recipes saved on the System.

3. The Manager chooses which recipe(s) to remove and removes them by selecting a

delete button through the terminal window.

4. The System confirms with each deletion with the Manager if he/she wants to delete

the recipe.

5. The Manager confirms his/her decision with a yes/no.

6. The System acknowledges the decision by either removing the recipe if responded

with “yes” or by canceling the delete if responded with “no”. It then displays an

acknowledgment of the decision by displaying a delete successful or a canceled

request.

Entry condition The Manager is logged in System

Exit condition The Manager has received an acknowledgment that the recipe has been deleted.

 OR

The Manager has received an acknowledgment that the recipe has not been deleted.

 OR

The Manager has received an explanation of why the process couldn’t be completed.

Quality

Requirement

The removed recipe should reflect in any other list or connected database.

Table 6:Remove Recipe Use Case

24

3.4.7 Add Occasion Use Case

Usecase

 name

AddOccasion

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Add Occasion or Event” function on his/her terminal.

2. The System displays a form to be filled out by the manager.

3. The Manager fills out the form by adding a name of the event or occasion and

selecting the date(s) the event is to be held.

4. The Manager now fills list of recipes that will be utilized more on the selected

day.

5. The System takes the data from the form and calculates the amount of ingredients

that may be used up for the given dates based on past data and adds the data to

the ingredient database.

6. The System now invokes the CheckThreshold use case.

Entry condition The Manager is logged into System.

Exit condition The Manager receives a notification of successful completion of the process

OR

The Manager is notified that the process was not complete with a valid explanation

of the error that had occurred during the process.

Quality

Requirements

The Occasion is accurately added to the database.

Table 7: Add Occasion Use Case

25

3.4.8 Update Inventory Use Case

Usecase name UpdateInventory

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Update Stock inventory” function on his/her

terminal.

2. The System now presents a form to the Manager asking for details of the

received amount of ingredients.

3. The Manager enters the ingredients and the corresponding quantity received

and presses the submit button.

4. The System adds the corresponding amount to the resources database and

acknowledges the completion of the process.

Entry condition The Manager is logged into the System

Exit condition The Inventory levels are successfully updated

Quality

Requirements

The number shown to the manager accurately shows the actual amount of

ingredients stored.

Table 8: Update Inventory Use Case

26

3.4.9 Correct Inventory Use Case

Use case name CorrectInventory

Participating

actors

Initiated by Manager

Flow of Events 1. The Manager presses the “Correct Inventory” button on the console.

 2. The System presents a CorrectInventory form to the Manager with the list of

ingredients and corresponding remaining quantity.

3. The Manager now enters the corrected quantity (if any corrections exists)

corresponding to each ingredient and presses the submit button.

 4. The System now updates the resources database with the correct

quantity.The System calculates the errors that were existing in the original and the

corrected values of the resources and accordingly adjusts the value of quantity of

ingredients used per recipe. It then prints out the correct inventory to the screen.

5. The Manager then acknowledges that the calculated inventory is accurate.

Entry

Conditions

The Manager is logged into the system

Exit Conditions The Inventory level is correctly updated

Quality

Requirements

The data taken from the Manager is accurately stored into the database.

Table 9: Correct Inventory Use Case

27

3.4.10 Add Vendor Use Case

Usecase name AddVendor

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Add Vendor” function on his/her terminal.

2. The System responds by displaying a form to be completed by the Manager for

the vendor to be created.

3. The Manager completes the form by filling the information of the vendor to be

created and also the ingredients that will be ordered from that vendor. After all of

the information has been filled in, the Manager then submits the form.

4. The System takes the information from the form and adds the vendor the database

of vendors. It then displays an acknowledgment to the Manager that the Vendor has

been added.

Entry condition The Manager is logged in System.

Exit condition The Manager has received an acknowledgment that the vendor has been created.

 OR

The Manager has received an explanation of why the process couldn’t be completed.

Quality

Requirements

The Vendor has been accurately stored into the database

Table 10: Add Vendor Use Case

28

3.4.11 Remove Vendor Use Case

Usecase name RemoveVendor

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Remove Vendor” function on his/her terminal

2. The System responds by showing the current list of Vendors saved to the System.

3. The Manager chooses which vendor(s) to remove and removes them by selecting

a delete button through the terminal window.

4. The System confirms with each deletion with the Manager if he/she wants to

remove the vendor.

5. The Manager confirms his/her decision with a yes/no.

6. The System acknowledges the decision by either removing the vendor if responded

with “yes” or by canceling the delete if responded with “no”. It then displays an

acknowledgment of the decision by displaying a delete successful or a canceled

request.

Entry condition The Manager is logged into the System

Exit condition The Manager has received an acknowledgment that the vendor has been removed.

 OR

The Manager has received an acknowledgment that the vendor has not been

removed.

 OR

The Manager has received an explanation of why the process couldn’t be completed.

29

Quality

Requirements

The Vendor should not appear in the list of active vendors or any other database

Table 11: Remove Vendor Use Case

3.4.12 Add Ingredients Use Case

Use case name AddIngredient

Participating

actors

Initiated from the AddRecipe use case

Flow of Events 1. The System presents a form to the Manager for adding the new ingredient.

2. The Manager inputs the details of the ingredient including the vendor from whom

the recipe is available. If the vendor is not currently part of the current database, the

Manager has to add a new vendor via the AddVendor use case. He/She then confirms

the details of the ingredient and presses the “Add” button

 3. The System now makes available the new ingredient to the Manager for

including it in the recipe.

Entry The AddRecipe function is currently running

Exit The Ingredient is successfully added to the database

Quality

Requirements

The details for the ingredient are correctly added to the correct database.

Table 12: Add Ingredients Use Case

30

3.5 MULTIPLICITY AND ASSOCIATION DIAGRAMS

3.5.1 Multiplicity Diagram

3.5.2 Association Diagram

Recipe Ingredients
* *

Vendors

Adds/deletes/updates

*

*

*

1 1

1
Manager Recipes

Vendors

Ingredients

Provides 1 * Ingredients Vendors

Figure 5: Multiplicity Diagram

Figure 6: Association Diagram

31

3.6 DYNAMIC MODEL

3.6.1 Update Resource Database Sequence Diagram

Figure 7: Update Resource Database Sequence Diagram

32

3.6.2 Add Recipe Sequence Diagram

Figure 8: Add Recipe Sequence Diagram

3.6.3 Remove Recipe Sequence Diagram

Figure 9: Remove Recipe Sequence Diagram

33

3.6.4 Update Recipe Sequence Diagram

Figure 10: Update Recipe Sequence Diagram

34

3.6.5 Add Vendor Sequence Diagram

Figure 11: Add Vendor Sequence Diagram

3.6.6 Remove Vendor Sequence Diagram

Figure 12: Remove Vendor Sequence Diagram

35

3.6.7 Update Inventory Sequence Diagram

Figure 13: Update Inventory Sequence Diagram

36

3.6.8 Correct Inventory Sequence Diagram

Figure 14: Correct Inventory Sequence Diagram

3.6.9 Add Occasion Sequence Diagram

Figure 15: Add Occasion Sequence Diagram

37

4 DETAILED SYSTEM DESIGN

4.1 DESIGN GOALS
¶ Low Response Time: The main functionality of the system involves updating and reading the data

from the database for different entities such as ingredients, recipes vendor etc. Thus the time

required to retrieve/ update/ add data to the database should be minimum and preferably should

be in the range of 2-5 seconds or lesser.

¶ High Robustness: The system should constantly check the user input at all instances that could

generate errors in the program. For instance:

o The system should be able to check input values for the amount of ingredients required

for the recipe and should make sure the user enters a numeric value in the input box and

the system shows an error and asks the user to re-input if in a perfectly validated field an

improper data type is inputted.

o The System should have validated input data fields and must put a constraint on the

inputted names of recipe, ingredient, vendor, and occasion etc. to ensure no duplicate

entries are added in the database. This ensures the robustness of the maintained

database.

o The system should verify all the inputs by the user by using a confirmation dialog box

before processing and making changes to the data.

¶ High Reliability: The reliability of the system depends upon its ability to replicate the specified

behavior. The safekeeping of the data is essential so as a result a backup of the levels is generated

and stored in the warehouse. There are numerous factors on which reliability can be defined as

for example, the specifications mention that the updating of database or the notification of a

successful update must be carried out within 2-5 seconds of initiation and the system must adhere

to these specifications to be called a reliable system. Similarly, the system should be able to

achieve performance in lieu with the specifications mentioned.

¶ Low fault tolerance: The system works on sensitive data and therefore any fault in the functioning

of the system will hinder accurate updating or reading of data. This could lead to invalid entries

in the database. Thus, the system should have low fault tolerance. This is in tandem with the

design goal of high robustness as the validation checks to ensure correct inputs from the user

implies that the fault tolerance of the system is low.

**Note: For detailed Design Report, refer the Design Report submitted earlier. [10]

38

¶ Security: The system must provide a login functionality to the Manager as the manager is the

authenticated controller of the system and any other user is not permitted to use the system

functionality and make changes in the database. Thus proper user authentication should be

necessary before system launch.

¶ High Extensibility: The design of the system should be such that any future improvement can be

added with no or minimum improvements. It is in one’s best interest to always give space for

future enhancements. For instance, right now there is no class that will help the user to

manipulate prediction of values and the current system only predicts the ingredient usage for a

certain date, but a feature can easily be added to incorporate prediction of recipe usage, order

prediction etc.

¶ Low Adaptability: The system is designed to work on the domain of inventory control and

management in the restaurant and catering industry. The functioning of this project is limited only

to these particular businesses which have similar functioning and thus it would then be subject to

structural re-modification in order to to apply it in some other application domain.

¶ High Readability: The system code should be properly commented so as to explain the

functionality of the code fragments. The code comment should explain the function or task the

code fragment performs and the result and the return value of the corresponding function or task

should also be mentioned.

¶ High Traceability: The coding scheme of the system should be such that it could be traced back

to its requirements specifications. This will enable high traceability of the code of the system.

39

4.2 SUBSYSTEM DECOMPOSITION

Figure 16: Subsystem Decomposition

40

Subsystem Description

ManagerInterface This subsystem defines an interface between the user and the system. The

user through this interface can access and execute different functions on

the various subsystems.

IngredientsManagement This subsystem provides services to manage the ingredients inventory of the

system. This subsystem provides services such as providing list of available

ingredients, providing details of individual ingredients in terms of the

current inventory levels, threshold levels etc. This subsystem requires the

services of Database subsystem to retrieve required details.

RecipeManagement This subsystem provides services to manage the Recipes in the inventory.

This subsystem provides services such as adding/updating/removing a

recipe to/from the inventory. This subsystem requires the services of

Database subsystem to retrieve the list of ingredients that make up the

recipe.

VendorManagement This subsystem provides services to manage the vendor that deliver

Ingredients. This provides services such as providing details of the vendor,

providing list of ingredients that the vendor supplies. This subsystem

communicates with the Database subsystem to retrieve the list of vendors

and the ingredient list to match them with the vendor names.

PredictionManagement This subsystem provides prediction of usage per ingredient to the user. This

subsystem communicates with the Database subsystem to access past data

of used resources from the database and then apply prediction algorithm

on the retrieved data to give estimates of usage to the user.

OrderManagement This subsystem provides services to generate orders for vendors for the

ingredients that are below threshold levels. This subsystem also provides

like editing a generated order and cancelling an generated order.

OccasionManagement This subsystem provides services to the user to add an occasion date to the

system so that the system prepares itself for an upcoming event on which

day the sales will be more than usual day sales. This subsystem requires the

services of Database subsystem to update/remove occasion days from the

database.

41

CorrectionManagement This subsystem provides services to the user to correct the levels of

inventory and avoid inventory slips. The user here uses this service to match

the actual inventory levels with the inventory levels in the system.

UpdatesManagement This subsystem provides services to the user to perform updates on the

database.

DatabaseSubsystem This subsystem connects to the database and provides requested database

to the other subsystems that request data from it.

Table 13: Subsystem Description

42

4.3 HARDWARE SOFTWARE MAPPING
The system runs on a standalone system without the need of any external server connection or internet

connection. Thus the hardware requirement of the product is a personal computer which meets the

requirements mentioned in the specifications. The product is programmed in Java programming language

and uses MySQL for database service. Thus the client computer requires the installation of JDK 1.6 and

MySQL server on its machine. The mapping between the hardware and the software can be interpreted

by the following diagram.

Figure 17: Deployment Diagram

43

4.4 PERSISTENT DATA MANAGEMENT

4.4.1 Persistent Objects

The main data entity that is persistent in the system is objects of class Ingredients. The objects of class

Ingredients are used by various classes to function. For example, the class Recipe uses the objects of

Ingredients class to define the contents of recipe with the name of ingredients that are accessed by the

objects of the class of Ingredients.

The object of the class Recipe have also to be classified as persistent objects even though the class derives

some of its properties from the Ingredients class. The reason for this is the classes AddRecipe,

RemoveRecipe, UpdateRecipe and Occasion are derived from the Recipe class and require the object of

the recipe class for their functionality.

Similarly, the objects of class Vendor have to be persistent as it also forms a building block of the whole

database system. The Vendor class objects give the list of vendor along with the ingredients they provide.

Thus the Vendor class uses the objects of the Ingredients class for its functionality.

In short, the objects of classes Ingredients, Recipe and Vendor are connected and depend highly upon

each other for their functionality. Additionally, other classes defined in the class diagram of the system

depend upon the data provided by the above mentioned classes for their functionality.

4.4.2 Storage Strategy

The database is created and maintained in the open source environment MySQL. The subsystems connect

to the database via JDBC API. Using an open source database management system enables us to reduce

cost of development of the system plus it allows us to maintain the database on the same machine on

which the other subsystems are functioning. The only thing required is a JDBC connector driver to setup

and maintain connection to the database. The type of database used is Relational database, as using a flat

file database would prove tedious if used on such highly connected data entities that we use in our system.

44

4.5 ACCESS CONTROL AND SECURITY

4.5.1 Access Matrix

Class Functions accessible to Manager

Recipe addRecipe()

removeRecipe()

updateRecipe()

Ingredients getIngredientsList()

addIngredient()

updateIngredient()

Vendor getVendorDetails()

getIngredientListFromVendor()

Prediction getPredictedUsage()

Updates updateAfterSales()

updateAfterReceiving()

Occasion addOccasion()

Order sendOrder()

editOrder()

cancelOrder()

Table 14: Access Matrix

45

4.6 GLOBAL SOFTWARE CONTROL
The type of global control flow used here is ‘Event driven’. The system works on the services requested

by the Manager. As a result the system waits for some activity on the part of the Manager to initiate any

process. Until then the system waits on the main user interface that provides the manager access to

various functions on the system.

To ensure a robust design of the system, we define some strategic goals for the system as mentioned

below:

V Boundary objects do not define any of the fields in the System, instead they are only associated with

creation of control objects upon request of access to specific functions by the Manager.

V Control Objects must not be shared among functions, instead if one function on the interface is

activated the other functions must not be accessible by the Manager until the current function

complete its operation.

V Entity objects must not allow direct access to its fields to any other class or object, instead it should

use getter and setter method to get and set the values of its attributes for better encapsulation.

V Database connection must not be open all the time, instead the connection to the database should be

made only when any functions requests data or wishes to update data.

V Entity data validation should be conducted at point where data is written into the database, this will

ensure that no invalid data is entered into the database avoiding any serious inventory slips in the

future.

V The system will require an authenticated login and password for accessing the main interface and

hence all the functions, this will prevent any unauthorized login into the system and hence make the

system secure. The master login and password will also ensure that the user is enabled to connect to

the database subsystem with any explicit login into the database management system.

4.7 Boundary Conditions

StartSystem: The Manager initiates the system using this function. At the startup, the Manager is asked

for authentication and if the authentication is successful, the main interface becomes visible to the

manager. There are no database connections established at in this phase hence meeting our global control

flow specification mentioned earlier. The Manager can now access and perform various services

accessible from the main interface. Any function accessed opens a database connection to the desired

database and closes the connection on termination of the function.

ExitSystem: The Manager can stop the system using the exit function on the main interface. This action

terminates the system. It is assumed that there are no active database connections at this point of time

as the Manager is at the main interface windows of the system and the design goals define no database

connectivity at this instance. Database connections are opened and closed at the initiation and

termination of the certain

46

Defining Exceptions

The scenarios of failure of the system can be stated as follows:

¶ The database connection cannot be established.

¶ Incorrect data is entered into the database in spite of the validations being carried out.

¶ The system crashes in the middle of an update process being carried out.

To deal with the above mentioned exceptions, we define two use-cases that will be used to overcome or

at least reduce the effects of the exception.

CheckDataIntegrity This use case can be invoked in the event of the one of the last two exceptions

occurs. This use-case will run through the whole database and check for non-

related data entries, incorrect data entries and incomplete data-entries. It will

then delete these irrelevant data entries from the database and provide the

Manager with an error free database to work with.

ResetDataConnectivity This use case can be invoked in the event the first exception occurs. This use

case with restart/re-establish all the database connectivity for the application,

invoke the CheckDataIntegrity use case mentioned above and then provide

the user with fresh error free database connectivity.

Table 15: Exception cases

47

4.8 Subsystem services

The subsystem services diagram can be shown below

Figure 18: Services Diagram

48

4.9 OBJECT DESIGN TRADEOFFS
¶ Space vs. Speed: The product is based on data inventory management and thus requires a lot of

space for the storage of data. Thus to make the system read and write data at a faster speed we

need more memory space.

¶ Build vs. Purchase: This product mostly uses open source products as development tools, so the

scope of purchase is minimized of off the shelf products required for this product. Also this

product uses open source libraries and source codes for some parts thus avoiding the Build vs.

Buy dilemma.

¶ Delivery time vs. Functionality: As this project is running on a tight schedule, it will be difficult to

produce a system with all the functionalities that are mentioned in the specifications by the date

of delivery but a prototype system with the important functionality must be ready by the

requested date. Functionalities such as prediction of data can be delivered at a later time.

49

4.10 INTERFACE DOCUMENTATION GUIDELINES
Below are mentioned guidelines for the interface documentation:

¶ The names of the class and class attributes should start with an uppercase letter and if the class

name consists of more than one word then CamelCasing should be used.

Example: Public class Ingredient{}

¶ The class methods begin with a lowercase and if the method name consists of more than one

word, camelCasing should be used.

Example: public boolean addIngredient()

¶ The Package names should start with and uppercase letter and use CamelCasing when package

names consist of multiple names. Also the package names must end with the word ‘Package’

 Example: package IngredientsPackage

¶ Constants are represented by all uppercase letters and constant names with multiple words

should be separated with underscores (‘_’).

Example: TOTAL_NUMBER_OF_RECIPES

¶ The class diagrams represent the access specifiers using symbols that can be summarized in the

image shown below

Figure 19: Attributes Naming Convention

¶ The method and attribute names should be such that they are self-explanatory of their context of

use.

Example: If the method adds a new recipe to the database the name of the method should be addRecipe.

50

If an attribute holds the value of the name of the ingredient, the name of the attribute should be

IngredientName.

¶ Comments must be used extensively to make the code easily understandable. All the classes must

have preface comments, all the methods must have the functionality commented in the code and

the attributes must have their usage comments too.

51

4.11 Packages

The figure below gives an overview of the package composition of the system.

Figure 20: Packages Diagram

Package Description

4.11.1 IngredientPackage:

V This package constitutes of two classes namely the Ingredient and Add Ingredient which forms the

basis of the system.

V This package provides functionalities to the user for adding new ingredients in the database. It also

provides the current list of ingredients in the database and the corresponding details.

V These functions act as a basic functionality for the classes that inherit the classes in the

IngredientPackage.

V For instance, the Recipe class requires the list of ingredients to assign ingredients to the recipe that

is being added, the list of ingredient is required for creating orders for the corresponding recipe. Thus

in short this package has classes that provide vital functionality to the classes in the other two

packages.

4.11.2 MiscPackage:

V This package constitutes of five classes which perform tasks quite different to each other and are

linked to the other two packages by the connections differing in functionality.

V The classes namely are Prediction, Orders, Updates, Vendor and Occasion. The Prediction and

Occasion classes can be considered as a special feature wherein ingredients are constantly being used

and if any occasion is near, then the prediction is done in accordance with the existing levels and past

history of usage.

V The Vendor and Orders are intertwined amongst themselves as in the usage. If low inventory levels

are sensed then the orders of required ingredients are passed by to the manager and an order form

is generated which is given to the vendor for the replenishing the inventory. Once the stock levels are

52

more than the threshold level then the update can be performed and the new levels are taken into

consideration.

4.11.3 RecipePackage:

V This Package Constitutes the Recipe, AddRecipe and RemoveRecipe which forms its classes. The

AddRecipe classes is usually used so as to include a new row in the recipe table and which in turn is

linked to the ingredients as when the following is utilized it indirectly uses up the ingredients involved.

V So along with the recipe, all the links to the ingredient are mandatory. Removing the recipe from the

recipe list may not affect the ingredients as the one to many relation for the recipe and ingredients is

still preserved.

V This package acts as an interface for the user, usage in order to make changes into the inventory with

perspective to usage. The recipe details usually include the recipe name, recipe ID and the associated

Ingredient ID as well. These classes mentioned above are inter linked so as to form a cohesive output.

53

4.12 CLASS INTERFACES
The figure below shows the class diagram of the whole system.

Figure 21: Overall Class Diagram

54

The figure above gives an overview of the class structure of the system. The details of the attributes and

functions along with access specifiers, return types and parameters are listed in the diagrams below.

4.12.1 Class Ingredient

Figure 22: Class Ingredient

4.12.2 Class AddIngredient

Figure 23: Class AddIngredients

55

4.12.3 Class Recipe

Figure 24 : Class Recipe

56

4.12.4 Class Vendor

Figure 25: Class Vendor

57

4.12.5 Class Prediction

Figure 26: Class Prediction

4.12.6 Class AddRecipe

Figure 27: Class AddRecipe

58

4.12.7 Class RemoveRecipe

Figure 28: Class RemoveRecipe

4.12.8 Class UpdateRecipe

Figure 29: Class UpdateRecipe

59

4.12.9 Class Updates

Figure 30: Class Updates

60

4.12.10 Class Occasion

Figure 31: Class Occasion

4.12.11 Class Orders

Figure 32: Class Orders

61

5 TESTING

5.1 FEATURES TO BE TESTED/NOT TO BE TESTED

5.1.1 Features to be tested

Below table lists the features that will be tested during the current test or the subsequent planned tests

Features to be tested Test Description

Login to the system This tests the login interface of the system.

Adding a Recipe to database This test is conducted to verify if a recipe is

successfully added to the database. This will

check if the recipe is added to its header table

and also check if the recipe details are added to

the recipe details table.

Adding an Ingredient to database This tests checks if new ingredient is added

correctly to the database with the specified

details.

Adding a Vendor to the database This test checks if the newly added vendor is

correctly added to the database with the

specified details.

Checking the threshold levels This test is conducted to verify if the ingredients

that are below the threshold levels are listed by

the function when called by the user. The

verification is done by referring to the database.

Updating the sales for the day This test is conducted to test the sales update in

the database. The test checks if the database is

updated with the correct ingredient values based

on the sales data input to the system.

Updating the order reception to database This test is conducted to test the correct updating

of the database after receiving the order from

the vendor.

Create Orders This test is conducted to check the order creation

capability of the system. The list of ingredients

that is generated for order must comply with the

set conditions of threshold levels

62

Process Orders This test is conducted to test if the created orders

are processed correctly into a file.

Updating a recipe This test checks for the correct updating of the

selected recipe.

Deleting a recipe This test checks for the deletion of the selected

recipe by the user. Also it has to check it

corresponding entries in the related tables are

deleted correctly.

Manager Interface This test will determine if the user is able to

navigate through the interface and if the user can

access the all the functions of the system

navigating via the main manager interface.

Table 16: Features to be tested

5.1.2 Features not to be tested

Features not to be tested Reason for not testing

Prediction Prediction requires a lot of past usage data to

function accurately. But, the system which is to

be tested is a prototype and is being tested on a

small set of data. Even if a large set of dummy

database were to be created, there will not be

any way in which the accuracy of prediction can

be determined unless matched with a real-time

data.

Correcting the inventory This feature actually tweaks the prediction and

the threshold whenever the correction is

performed and as this deals with the proper

functioning of prediction, the data is unverifiable

and hence will not be tested.

Occasion Management This feature again deals with the prediction of

ingredient usage for different occasions set by

the user and hence are not completely verifiable

and thus skipped in this test.

Table 17: Features not to be tested

**Note: For detailed test cases and results, refer to Testing Document submitted earlier. [11].

63

5.2 PASS/FAIL CRITERIA
The main motive of testing is to find faults in the system/component so that they can be dealt with in the

future. Thus it is really necessary to define the pass/fail criteria of the system to know which areas of the

system require a developer’s attention.

Here, in each of the test case, we define the Expected result as well as the Actual Result. Now after testing

each test case with a variety of boundary inputs, we are in a state to compare the expected result to the

actual result received.

If the actual result is in agreement with the expected test result, we term the test as pass and if the actual

test result and the expected result vary, the test is termed as fail. Whenever a test fails, we know which

input/sequence of inputs caused the test to fail and therefore can deal with it so that the same type of

input does not cause errors in the system at a later stage.

5.3 APPROACH
The tests carried out follow for the most part of the testing the unit testing strategy and to be more

specific, boundary testing. Here, we try to figure out various input values, scenarios in which the user can

interact with the system/component, and test if the expected output matches the actual result of the

system. This will help us know the various errors/exceptions that can occur in the system/component with

the range of possible inputs.

For each input field/case we have tried and considered various extreme inputs that the user can

accidentally or intentionally feed in which may cause the system to break or the database inventory to

slip. The result of these tests will help us to know on which user input the system falters (does not function

normally) and thus precautions can be taken to prevent the any changes being submitted to the database

for the incorrect inputs.

Further, during the testing, we also test if the correct user inputs are correctly updates to the database,

precisely checking if the data reached its target table at the correct place. This test will requires all the

user inputs to be valid to be successfully tested.

As the system is still under development, the testing of the whole system is not possible. Thus, we choose

to integrate the components that are developed and test their functionality when under this integration.

In this part, we choose to check if the user is able to access the functions that are available and if the user

is able to go through the interface without trouble.

64

5.4 SUSPENSION AND RESUMPTION

5.4.1 Suspension

The item that are listed under the Features not to be tested table are the items suspended from the testing.

Also some items that are not tested completely remain suspended from the testing. The items can be

summarized as follows

¶ Recipe Management

o Updating a recipe.

o Deleting a recipe.

¶ Ingredient Management

o Deleting an ingredient

o Correcting the ingredient quantity in the inventory

¶ Vendor Management

o Deleting a vendor

¶ Occasion Management

o Adding/Removing an occasion

o Predicting the requirements for the occasion day

¶ Prediction

o Predicting requirements in general

o Alerting the user of predicted low inventory level for a specific day

5.4.2 Resumption

As the system is currently under development, the above mentioned features are currently suspended

from testing as they are partially developed or the development for them have not yet started.

Whenever the testing for the suspended features is resumed, it will be utterly necessary to redo the

testing that are currently performed as only then it will ensure the integrity that any change that was

made during development of components or any new component that was added during the

development process. This will help us know that the development process has not introduced any new

errors in the system and new components were added to the system without introducing any more

complexity.

Many of the components in the program manipulate data in the database. Any components that have

been changed may cause changes to how the database is read from and written to. That's why it is

important to essentially retest any affected components (subsystems that also use the same table in the

database). If we did not do this, we may experience catastrophic database errors.

65

5.5 TESTING MATERIALS (HARDWARE/SOFTWARE REQUIREMENTS)

5.5.1 Software requirements

The coding for the system is being done on Netbeans IDE for Java and the database management utility

that is being used is MySQL. As the system uses no network connectivity, the system does not require any

other specialized software for network connectivity. Any operating system that supports these two

modules is a perfectly suitable OS for the testing purposes.

V Netbeans IDE for Java

V MySQL

V Windows XP, 7.

Also one driver is required for facilitating the connectivity between Netbeans and MySQL and that is

MySQL Connector/J 5.1.6. This driver must be explicitly imported in the project directory of Netbeans.

5.5.2 Hardware Requirements

The hardware requirement of the testing is specifically a Laptop/Desktop with the following minimum

hardware configuration

V Processor: 800MHz Intel Pentium III or equivalent

V Memory: 512 MB

V Disk space: 750 MB of free disk space.

66

5.6 TEST CASES

5.6.1 Test case 1: Testing the Add Recipe Interface and its functioning

V Case 1.1: Testing the Quantity input field.

V Case 1.2: Testing the Recipe Name field.

V Case 1.3: Testing the Ingredients in recipe list and Quantity of ingredient list.

V Case 1.4: Testing the available ingredients list.

V Case 1.5: Testing the all the above cases together and checking if the entries are updated to the

tables in database.

5.6.1.1 Test case specifications for Test case 1: Testing the Add Recipe Interface and its functioning

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Interface

Dependencies

Case 1.1 Quantity text

field

1) Input

negative

numbers.

2) Input String

3) Input zero.

4) Input

floating point

numbers.

5) Leave the

field blank

6) Enter

special

character in

the field.

7) Input

integer

numbers

greater than

zero less than

1) Input

specifications

1, 2, 3, 4, 5, 6

& 8 must

generate

exceptions

asking the

user to re-

enter the text

in the field.

2) Input

specification 7

should not

generate any

error.

Select an

ingredient

from the

ingredient list

and enter a

quantity in the

quantity field

and press add

to recipe

button.

N.A

67

10000.

8) Input

integer

number

greater than

9999.

Case 1.2 Recipe Name

Field

1) Input

numerical

value for the

name

2) Leave the

field blank

3) Enter an

existing recipe

name.

4) Enter

special

characters in

the field

5) Enter a non-

existing recipe

name,

 (string)

1) Input

specifications

1, 2, 3 and 4

must generate

exceptions

asking the

user to re-

enter the text

in the field.

2) Input

specification 5

must not

generate an

exception

except for a

really long

string (more

than 50

characters)

Enter a name

for the recipe,

add some

ingredient to

the list along

with

appropriate

quantity and

press the

submit button.

N.A

Case 1.3 Ingredient in

recipe list &

corresponding

Quantity list

1) List is left

empty.

2) One

ingredient is

added twice to

the list.

1) The input

specification 1

& 2 result in

an exception

being thrown.

For the first

input:

Enter an

appropriate

Recipe Name

and press Add

to database

button.

For the second

input:

Selected one

ingredient,

enter an

appropriate

N.A

68

quantity and

press Add to

Recipe button

twice.

Case 1.4 Testing the

available

ingredients

list.

N.A The List of

ingredients

must show all

the

ingredients

that are

currently in

the database

N.A N.A

Case 1.5 Testing the

components

mentioned

above

together and

adding a

recipe to the

database

1) All the

required

quantities are

inserted into

their

respective

fields.

1) If all the

above tests

are passed

without an

exception, the

recipe is

successfully

added to the

database

1) Enter a

recipe name.

2) Select

Ingredient

from the

ingredient list

and enter

quantity

amount for

the recipe and

press the add

to recipe

button.

3) Repeat step

2 until all the

desired

ingredients

are added to

the list.

4) Press the

Submit button

N.A

Table 18: Test case specifications for Test case 1: Testing the Add Recipe Interface and its functioning

69

5.6.1.2 Preliminary test results for test case 1

Test Case Completed / Not Completed Result summary

Case 1.1 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 1.2 Completed The results for the mentioned

input specifications have been

passed except for the inputs

× Recipe Name= 1223234

× Recipe Name = %$^&$

Case 1.3 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 1.4 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 1.5 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Table 19: Preliminary test results for test case 1

70

5.6.2 Test case 2: Logging in to the system

This case will test the login system. The test must be conducted to see if access is allowed only to the

authenticated users (in this case it is only one user i.e. the Manager). On Successful login, the main

interface must be visible to the user.

5.6.2.1 Test case specifications for Test case 2: Logging in to the system

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Interface

Dependencies

Case 2.1 Login text field

and password

field

1) Login name

is incorrect.

2) Login name

is correct but

password is

incorrect.

3) Login name

or password is

blank or both

are blank.

4) Login Name

and password

both are

correct.

1) The input

specifications

1, 2 & 3 must

generate an

exception and

ask the user to

input the

credentials

again

2) The input

specification 4

must show the

user Main

Interface

Enter the login

name and

password and

press the login

button.

N.A

Table 20: Test case specifications for Test case 2: Logging in to the system

5.6.2.2 Preliminary test results for test case 2

Test Case 2 Completed/Not Completed Result Summary

Case 2.1 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Table 21: Preliminary test results for test case 2

71

5.6.3 Test Case 3: Testing the Add Ingredient Interface of the system

This case will test the Add Ingredient processing. The test must be conducted to ensure whether when

user (Manager) when text inputs the ingredient name and the quantity in the provided text fields of the

Add ingredient form. We must make sure that the each of the fields are validated and proper input

should certify and reflect the changes in the database and also when quantity check is done.

V Case 3.1: Test the Ingredient name field.

V Case 3.2: Test the Threshold value field.

V Case 3.3: Test the Current Quantity field.

V Case 3.4: Test the select vendor field.

V Case 3.5: Test the Current Ingredient list field.

5.6.3.1 Test case specifications for Test case 3: Testing the Add Ingredient Interface of the system

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Interface

Dependencies

Case 3.1 Ingredient

Name field

1) Input

numerical

value for the

name.

2) Leave the

field blank

3) Enter an

existing

Ingredient

name.

4) Enter

special

characters in

the field.

5) Enter a non-

existing

Ingredient

1) Input

specifications

1, 2, 3 and 4

must generate

exceptions

asking the

user to re-

enter the text

in the field.

2) Input

specification 5

must not

generate an

exception in

general except

for a really

long name

(more than 25

characters)

Enter the

Ingredient

Name,

appropriate

threshold and

current

quantity

values, select

a vendor and

Press Submit

button.

N.A

72

name,

 (string)

Case 3.2 Threshold

value field

1) Input

negative

numbers.

2) Input String

3) Input zero.

4) Input

floating point

numbers.

5) Leave the

field blank

6) Enter

special

characters in

the field.

7) Input

integer

numbers

greater than

zero less than

10000

8) Input

integer

numbers

greater than

9999.

1) Input

specifications

1, 2, 3, 4, 5, 6

& 8 must

generate

exceptions

asking the

user to re-

enter the text

in the field.

2) Input

specification 7

should not

generate any

error.

Enter an

appropriate

Ingredient

Name,

threshold

values, current

quantity, and

select a

vendor and

then press the

submit button.

N.A

Case 3.3 Current

Quantity field

1) Input

negative

numbers.

2) Input String

3) Input zero.

4) Input

1) Input

specifications

1, 2, 3, 4, 5, 6

& 8 must

generate

exceptions

asking the

user to re-

enter the text

Enter an

appropriate

Ingredient

Name,

threshold

values, current

quantity, and

select a

vendor and

N.A

73

floating point

numbers.

5) Leave the

field blank

6) Enter

special

characters in

the field.

7) Input

integer

numbers

greater than

zero less than

10000

8) Input

integer

numbers

greater than

9999.

in the field.

2) Input

specification 7

should not

generate any

error.

then press the

submit button.

Case 3.4 Select Vendor

Drop down

box

Load the

form/Activate

the Add

Ingredient

function

The combo

box for select

vendor should

show all the

available

vendors from

the database

The combo

box for select

vendor shows

all the

available

vendors from

the database

NA

Case 3.5 Current

Ingredient list

Activate the

Add ingredient

function

The Current

Ingredient List

must show all

the

ingredients

from the

database

The Current

Ingredient List

must show all

the

ingredients

from the

database

N.A

Table 22: Test case specifications for Test case 3

74

5.6.3.2 Preliminary test results for test case 3

Test case Completed/Not Completed Results Summary

Case 3.1 Completed The test results for this test case

has been passed for most input

specifications but fails for the

inputs mentioned below

× Ingredient Name= 123123

(The test fails for numerical

inputs)

× Ingredient Name = %&*&^

(The test fails for special

character inputs)

Case 3.2 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 3.3 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 3.4 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 3.5 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Table 23: Preliminary test results for test case 3

75

5.6.4 Test Case 4: Testing the Add vendor Interface of the system

V Case 4.1 Test the Vendor name field.

V Case 4.2 Test the vendor type field.

V Case 4.3 Test the vendor details field.

V Case 4.4 Test the email address field.

5.6.4.1 Test case specification for test case 4: Testing the Add vendor Interface of the system

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Case 4.1 Vendor Name

field

1) Input numerical

value for the

name.

2) Leave the field

blank.

3) Enter an

existing Vendor

name.

4) Enter special

characters in the

field.

5) Enter a non-

existing recipe

name. (string)

1) Input

specifications 1, 2,

3 and 4 must

generate

exceptions asking

the user to re-

enter the text in

the field.

2) Input

specification 5

must not

generate an

exception in

general except for

a really long name

(more than 25

characters)

Input all the

required fields

and press the

Submit button

Case 4.2 Vendor Type Field 1) Input numerical

value for the

name.

2) Leave the field

blank.

3) Enter an

existing Vendor

type.

1) Input

specifications 1, 2,

and 4 must

generate

exceptions asking

the user to re-

enter the text in

the field.

2) Input

Input all the

required fields

and press the

Submit button

76

4) Enter special

characters in the

field.

5) Enter a non-

existing recipe

name. (string)

specification 5

must not

generate an

exception in

general except for

a really long name

(more than 25

characters)

3) Input

specification 3

must not result in

an exception.

Case 4.3 Vendor Details

Field

1) Leave the field

blank

2) Input details in

the field

1) Input

specification 1

must result in an

exception

2) Input

specification must

not result in an

exception

Input all the

required fields

and press the

Submit button

Case 4.4 Vendor Email

Field

1) Leave the field

Blank

2) Input email in

an incorrect

format

3) Input email in a

correct format.

1) Input

specifications 1

and 2 must

generate

exception.

2) Input condition

3 must not

generate an

exception

Input all the

required fields

and press the

submit button.

Table 24: Test case specification for test case 4: Testing the Add vendor Interface of the system

77

5.6.4.2 Preliminary Test Results for test case 4

Test Case Completed/Not

Completed

Result Summary

Case 4.1 Completed The test results for this test case has been

passed for most input specifications but fails

for the inputs mentioned below

× Vendor Name= 123123 (The test fails for

numerical inputs)

× Vendor Name = %&*&^ (The test fails for

special character inputs)

Case 4.2 Completed The test results for this test case has been

passed for most input specifications but fails

for the inputs mentioned below

× Vendor Type= 123123 (The test fails for

numerical inputs)

× Vendor Type = %&*&^ (The test fails for

special character inputs)

Case 4.3 Completed The test results for this test case has been

passed for most input specifications but fails

for the inputs mentioned below

× Vendor Details = Patel Brothers, Devon

Street, Chicago, IL (Duplicate Details)

× Vendor Details = $^%$^% (The test fails

for special character inputs).

Case 4.4 Completed The test results for this test case has been

passed for most input specifications but fails

for the inputs mentioned below

× Vendor Email = 123214

× Vendor Email = abc@xyz.com

 (existing email)

× Vendor Email = $^%$^%

Table 25: Preliminary Test Results for test case 4

mailto:abc@xyz.com

78

5.6.5 Test Case 5: Check Threshold Interface

V Test Case 5.1: Check if the Ingredients under the threshold values are shown in the Ingredients

below threshold list.

V Test Case 5.2: Check if the Create order button asks the user to enter values for all the

ingredients listed under the ingredients below threshold list.

V Test Case 5.3: Check if pressing the Process Order button creates a file with the order details in

it.

5.6.5.1 Test case specification for test Case 5: Check Threshold Interface

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Case 5.1 Ingredients Below

Threshold List

Press the Check

Threshold Button

The Ingredients

below threshold

list must show all

the ingredients

below threshold

level

Press the Check

threshold button

on the Check

Threshold form

Case 5.2 Create Order

Button

Press the Create

Order Button

The user must be

prompted to

input order

quantity for all

the ingredients

that are currently

below threshold

Press the check

threshold button

and the press the

check threshold

button.

Case 5.3 Process Order

Button

Press the process

order button

A file with the

order details must

be created.

Press the check

threshold button,

then press the

create order

button and enter

quantities for

corresponding

ingredients and

then press the

process order

button.

Table 26: Test case specification for test Case 5

79

5.6.5.2 Preliminary Test Reports for test case 5

Test Case Completed/Not Completed Result Summary

Case 5.1 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 5.2 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Case 5.3 Completed The results for all the input

specification for this test is

passed and no difference was

detected between the actual

and the expected results.

Table 27: Preliminary Test Reports for test case 5

80

5.6.6 Test Case 6: Testing the Update after sales interface

V Case 6.1 Test the Recipe list box.

V Case 6.2 Test the quantity text field.

V Case 6.3 Test the recipe sold list box quantity sold list box.

V Case 6.4: Test if the details are updated to the database when requested.

5.6.6.1 Test case specification for test Case 6: Testing the update after sales interface

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Case 6.1 Recipe List box Load the Update

After Sales

interface

The Recipe list

box must show all

the current

recipes on the

database

N.A

Case 6.2 Quantity text field 1) Input negative

numbers.

2) Input String

3) Input zero.

4) Input floating

point numbers.

5) Leave the field

blank

6) Enter special

characters in the

field.

7) Input integer

numbers greater

than zero less

than 100

8) Input integer

numbers greater

than 99.

1) Input

specifications 1, 2,

3, 4, 5, 6 & 8 must

generate

exceptions asking

the user to re-

enter the text in

the field.

2) Input

specification 7

should not

generate any

error

Select a recipe

from the list and

enter the quantity

then press the

add button.

81

Case 6.3 Recipe Sold List

Box

1) Select a recipe

and enter an

appropriate

quantity then

press the add

button

The Selected

Recipe must Show

in the Sold Recipe

List Box along

with the

corresponding

quantity in the

quantity sold list

box.

N.A

Case 6.4 Testing if the

selected data is

processed

properly and

updated to the

database

1) Select recipe

and enter a

corresponding

quantity press the

add button and

the when the

recipe shows in

the sold recipe list

box, press the

update button.

A dialog box

“Success” must

show and the

database must be

checked for

appropriate

updates.

N.A

Table 28: Test case specification for test Case 6: Testing the update after sales interface

5.6.6.2 Preliminary test results for test case 6

Test Case Completed/Not Completed Result Summary

Case 6.1 Not Completed N.A

Case 6.2 Not Completed N.A

Case 6.3 Not Completed N.A

Table 29: Preliminary test results for test case 6

82

5.6.7 Test Case 7: Testing the Update After receiving interface

V Case 7.1: Check the Ingredient list box.

V Case 7.2: Check the Quantity text field.

V Case 7.3: Check the Ingredient Received and Quantity Received List boxes.

V Case 7.4: Check if the received Ingredient quantities are updated in the database.

5.6.7.1 Test case specification for Test case 7: Testing the update after receiving interface

Test case

Identifier

Test Items Input

Specifications

Output

Specifications

Special

Procedural

Requirements

Case 7.1 Ingredient list box Load the Update

After Receiving

interface

The Ingredient list

box must show all

the current

Ingredients on the

database

N.A

Case 7.2 Quantity text field 1) Input negative

numbers.

2) Input String

3) Input zero.

4) Input floating

point numbers.

5) Leave the field

blank

6) Enter special

characters in the

field.

7) Input integer

numbers greater

than zero less

than 100

8) Input integer

numbers greater

than 99.

1) Input

specifications 1, 2,

3, 4, 5, 6 & 8 must

generate

exceptions asking

the user to re-

enter the text in

the field.

2) Input

specification 7

should not

generate any

error

Select an

ingredient from

the list and enter

the quantity then

press the add

button.

83

Case 7.3 Ingredient

Received and

Quantity Received

List boxes.

1) Select an

received

ingredient, enter

corresponding

quantity and

press the add

button

1) The selected

ingredient and

quantity must

show in the

Ingredient

received and

Quantity Received

list boxes

NA

Case 7.4 Testing if the

selected data is

processed

properly and

updated to the

database

1) Select

Ingredient and

enter a

corresponding

quantity press the

add button and

the when the

Ingredient shows

in the sold recipe

list box, press the

update button.

A dialog box

“Success” must

show and the

database must be

checked for

appropriate

updates.

N.A

Table 30: Test case specification for Test case 7: Testing the update after receiving interface

5.6.7.2 Preliminary Test Results for test case 7

Test Case Completed/Not Completed Result Summary

Case 7.1 Not Completed N.A

Case 7.2 Not Completed N.A

Case 7.3 Not Completed N.A

Case 7.4 Not Completed N.A

Table 31: Preliminary Test Results for test case 7

84

5.7 COMPONENT INSPECTION
The following inspections look at the source code for the Check Threshold and Add Vendor interface. The

logic code is located in the .java files, but there are more files that include the user interface design.

Inspections were completed following Michael Fagan's inspection method and are documented below.

The inspection team was told to keep in mind that the NetBeans IDE automatically generated code

associated with the creation of the object and GUI. This code was excluded from the inspection as

tinkering with it may have caused errors in the GUI.

5.7.1 Inspection of Check Threshold

5.7.1.1 Overview

The ‘Check Threshold’ component is one of the features required for our project. The component allows

the manager to see which items have fallen below their threshold. It also gives them the option to select

items and amounts to be ordered. These orders are then generated automatically by the system. The text

fields of the form are utilized for mapping and validating the inputs accordingly. The ‘Check Threshold’

form was designed, integrated and executed into the package by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩ.

5.7.1.2 Preparation

The review of form perfectly suggested the inputs and the outputs of the 'Check Threshold’ component.

The text fields had satisfied the criteria of validation, duplication and also inconsistency of the data. The

reflections are also checked in the data for proper inputs of data. The form was reviewed by Ψ.ŀǊǘ aƛŎȊŜƪΩ

and Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ.

5.7.1.3 Inspection Meeting

The Inspection meeting was attended by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩ, Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ and Ψ.ŀǊǘ aƛŎȊŜƪΩ and the

key issues discussed are given as:

V String associated with the database connection (such as username, password, and connection

string) should be global package variables. This allows the values set to these strings to be

manipulated at a larger scale (shared by all components of the program). This way, if the password

to access the database is changed, there is no need to go change it in each respective source code

file. Rather, we change the global variable and it continues to be used throughout the program.

V Some "try" code segments weren't following by a "catch" segment in case an error does occur.

V The document generated by component is a simple text based file. This should be later expanded

to a possible pdf document that can be emailed as a properly formatted order form.

5.7.1.4 Rework

Some of the changes were corrected satisfying the discussed criteria in the inspection meeting. The

Rework was done by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩ and 'Bart Miczek'.

85

5.7.1.5 Follow up

The follow up to the ‘Check Threshold’ form was attended by Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ and Ψ.ŀǊǘ aƛŎȊŜƪΩ and no

errors were found. Thus it resulted in a successful integration into the package.

5.7.2 Inspection of Add Vendor

5.7.2.1 Overview

The ‘Add vendor’ is one of the features required for our project. This option of adding a vendor links to

the multiple tables in the database as every item is linked to the Ingredients and the changes being made

to it. If a vendor is added then the ingredients which are provided by him are stored and when order form

for the particular ingredients is being done then the appropriate vendor should be chosen. The text fields

of the form are utilized for mapping and validating the inputs accordingly. The ‘Add vendor’ form was

designed, integrated and executed into the package by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩ.

5.7.2.2 Preparation

The review of form perfectly suggested the inputs and the outputs of the ‘Add vendor’. The text fields had

satisfied the criteria of validation, duplication and also inconsistency of the data. The reflections are also

checked in the data for proper inputs of data. The form was reviewed by Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ ŀƴŘ Ψ.ŀǊǘ

aƛŎȊŜƪΩΦ

5.7.2.3 Inspection Meeting

The Inspection meeting was attended by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩΣ Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ ϧ Ψ.ŀǊǘ aƛŎȊŜƪΩ. The key

issues discussed are given as:

· Prohibition of the use of special characters in the text field.

· Linking the table to the other tables.

· Linking the Generation of Order to the data accumulated by this form.

· Printing the Order form.

· Problem with the Catch method in some instances.

5.7.2.4 Rework

Some of the changes were corrected satisfying the discussed criteria in the inspection meeting. The

Rework was done by Ψ{ƛƳŀƴǘ tǳǊƻƘƛǘΩ.

5.7.2.5 Follow up

The follow up of the ‘Add vendor’ form was attended by Ψ!ƪǎƘŀȅ ¢ƘƛǊƪŀǘŜƘΩ ŀƴŘ Ψ.ŀǊǘ aƛŎȊŜƪΩ and no

errors were found. Thus it was successfully integrated into the package.

86

6 CONCLUSION:

The project “Inventory Control System for Calculation and Ordering of Available and Processed Resources”

mainly as the name suggests deals with the calculation of the available and processed resources for an

accurate inventory control and process management for a domain specific client who are related to the

subject of food chains/outlets. This enables the inventory to be applied at every level in the hierarchy of

the products and its complex combinations of recipes.

A system that accurately calculates the atomic ingredients used for making a recipe then automatically

performs the back end operation pertaining to a database of many relational tables onto which the

changes are being made with each and every operation performed on the front end and which also shows

up if at the time of retrieval. The most important part of Inventory controlling is its ability to check for

threshold levels and alert the manager to replenish the stock before it reaches a danger zone. So as when

an ingredient level goes below the threshold level then it routes an alert to the manager. Then if needed

accordingly an automated order form is produced so as to each specific vendor along with the quantities

needed for replenishment.

As a part of the standard maintaining a drill of risk management is done in order to sustain during the days

of special occasion or holidays when the demand reaches to rather more different scale as compared to

other days. These occasions call on for special inclusions into the menu which reflects on the recipes and

in turn reflects the ingredients being used up eventually. Thus was provided the liberty of adding special

recipe to the menu for some special occasion and is regarded as a key feature.

To be able to simplify the user friendliness even more the concept of ‘prediction’ is added which enables

the manager to see the past years prediction of the ingredients usage and then based on the informational

analysis done on the data a prediction is then generated which would suit the requirements of the current

year and then accordingly an appropriate order form is generated and then passed on to the vendor as

the requirements for replenishing the stock.

87

7 PROCESS IMPROVEMENT:

The general software development process could have been more streamlined when it comes to the

sharing of documents and code. Due to individual preferences, documents were shared through multiple

interfaces including email, Google Drive, Microsoft SkyDrive, and USB sticks. Choosing a specific platform

dedicated to the project would have been more ideal. There also exist online drives specific to

programmers and code, such as Git-Hub and Google Code that we would utilize in future projects.

We also made the change from developing in Visual Basic to Java in a matter that worked for the group

but would most likely be a rather large change in a larger group of developers. Such a change would have

to be documented heavily as it influences all of the documents that had been generated to that point.

The process of generating the proposal, requirements, design, and testing documents feels like a very

intuitive and streamlined process. What might have helped is programming the project prior to any

documentation. This would then give us an idea of what we needed to achieve and what was necessary.

A program that handles large amounts of data and requires the level of user interaction with a database

was generally a new idea to us. A small test program would have helped put an idea of what we were

trying to achieve at the very beginning of the process.

88

8 FUTURE DEVELOPMENT

There is a scope of lot of improvement given that the application of this project which is now limited to

only food chains / outlets can be applied to other branches also given that it is subjected to appropriate

changes. The prediction algorithm needs to be still more enhanced, but that is possible with years of data

analysis and would then might also be changed to an artificially intelligent system. Also considering the

large technological movement, access to the program through a web application would be ideal for

remote access to the program and database. This would require a dedicated server to host the database

and therefore has been considered as an optional enhancement.

To list, the future development may include the following

V Improvised Prediction.

V Use of AI to learn user behavior and responses.

V Expansion of software domain.

V Expansion to web domain.

V Allowing remote access.

V Allowing orders to be sent electronically.

89

9 BIBILIOGRAPHIC REFERENCES:

[1] Java Swing, 2nd Edition, Marc Loy, Robert Eckstein, Dave Wood, James Elliott, Brian Cole,

O'Reilly Media-2002.

[2] Database programming with JDBC and Java, O'Reilly and George Reese, O'Reilly Media-2002.

[3] Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering Using UML, Patterns,

and Java, Third Edition, 2005.

[4] Object design tradeoffs for Project, http://www.scribd.com/doc/38302828/29/Object-design-

trade-offs

[5] Technical Design Document. www.in.gov/fssa/files/QualCheck.pdf

[6] Union Design Pattern: Inheritance and Polymorphism. http://cnx.org/content/m11796/latest/

[7] CS 440 Fall 2012 Homepage. http://www.cs.uic.edu/~i440/

[8] Volere Requirement Resources. http://www.volere.co.uk/index.htm

[9] Requirements Analysis Document, submitted 19th October 2012.

https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!195&authkey=!AJpVRmJ8w8giN_M

[10] Design Report, submitted 9th November 2012.

https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!196&authkey=!AO5IghTCML6xAk8

[11] Testing Document, submitted 26th November 2012.

https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!161&authkey=!AC8P0Lqe9amxSeM

[12] Project Proposal Document, submitted 21st September 2012.

https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!175&authkey=!AB_dzPgl7Y2vDdw

http://shop.oreilly.com/product/9780596004088.do#tab_04
http://www.scribd.com/doc/38302828/29/Object-design-trade-offs
http://www.scribd.com/doc/38302828/29/Object-design-trade-offs
http://www.in.gov/fssa/files/QualCheck.pdf
http://cnx.org/content/m11796/latest/
http://www.cs.uic.edu/~i440/
http://www.volere.co.uk/index.htm
https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!195&authkey=!AJpVRmJ8w8giN_M
https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!196&authkey=!AO5IghTCML6xAk8
https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!161&authkey=!AC8P0Lqe9amxSeM
https://skydrive.live.com/redir?resid=2CEDE9F7F5F99604!175&authkey=!AB_dzPgl7Y2vDdw

90

10 GLOSSARY

Manager A manager is the person who is here considered to be the person in charge. He
undertakes responsibility of maintaining, operating the store and keeps
information of each and every specifics. He is also responsible for taking
decisions regarding issuing orders to vendors , add new vendors, create new
recipes ,etc.

Recipe A recipe is a dish that is made using the ingredients from the store. The recipes
and ingredients are inter-related. A recipe is usually made up of two or more
ingredients.

Ingredients Ingredients here considered to be atomic substances which are used as a
component of a recipe. These basic ingredients cluster to form a recipe. The
availability of these help in creating new recipes and regularly checking the
inventory levels and prediction analysis.

Vendor The necessary consumable items (ingredients) which are used up in preparing
the recipes are provided by the vendor on a regular basis. The manager is
responsible for checking the current level of inventory with the threshold
levels and if any particular ingredient is found to be in the danger zone then an
order is processed by the manager to the vendor.

Order Order is a generalized function used for replenishment of used up ingredients.
The order usually consists of an order form which is supplied by the manager
to the vendors.

Add Recipe This action leads to the addition of a new recipe into the existing list of recipes.
When a new recipe is made it also links up to the ingredients being used. So
whenever a particular recipe is ordered it ends up using its required
ingredients.

Remove Recipe The manager initiates the remove the recipe action. Once a recipe is removed
it is also cleared from the RECIPE table.

Add Vendor Add vendor is the case when a new ingredient is being added to the database
and the present vendor isn’t supplying that particular item.

Remove Vendor If a vendor is removed from the list of vendors then the recipe table reflects
only the recipes that are not linked with that particular vendor.

Check Threshold Check threshold level refers to checking the inventory levels of all the
ingredients. This provides information pertaining to the next order (vendor)
and also the recipe selection.

Process Order A process order issues a purchase/required list of ingredients and accordingly
generates a purchase order for the vendor.

Update Resource
Database

Updating the resource gives a crystal clear idea to the manager regarding the
usage of the inventory from the quantity sold in a particular time period. This
leads to the checking the threshold values.

Add Occasion Occasion refers to something special and this leads to extra needs from the
vendor. So accordingly when an occasion is added the specials recipes are kept
in mind and a purchase order to satisfying the special needs is generated.

91

11 APPENDIX

11.1 TEST RESULTS FOR TEST CASE 1
Test case ID

Input for the test Expected result Actual result Pass/Fail

Case 1.1 Quantity = -10 Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 1.1 Quantity = xyz Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 1.1 Quantity = 0 Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.1 Quantity = 12.4 Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.1 Quantity = Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.1 Quantity = $# ̂ Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.1 Quantity = 15 No error must be

displayed and

ingredient must

be added to the

list with the

No error is

displayed and

ingredient is

added to the list

with the

Pass

92

corresponding

quantity.

corresponding

quantity.

Case 1.1 Quantity =

10000

Error must be

displayed.

An error is

displayed and the

user is asked to

enter the quantity

again.

Pass

Case 1.2 Recipe Name =

123214

Error message

must be

displayed.

Error message is

not displayed

Fail

Case 1.2 Recipe Name = Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.2 Recipe Name =

Kadai Paneer

(existing recipe

name)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 1.2 Recipe Name =

$^%$^%

Error message

must be

displayed.

No error

displayed

Fail

Case 1.2 Recipe Name =

Cheese Pizza

 (non existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input

Pass

Case 1.2 Recipe Name= (a

really long text

with more than

50 characters)

An error must be

displayed for too

long name.

An error message

is displayed.

Pass

Case 1.3 No data is added

to the list.

Error must be

displayed when

Add to database

button is pressed.

Error is displayed

when Add to

database button

is pressed.

Pass

Case 1.3 User tries to add

the same

ingredient twice

Error must be

displayed and the

duplicate entry

Error is displayed

and the duplicate

Pass

93

to the Ingredient

in recipe list.

must not show in

the list

entry does not

show in the list

Case 1.4 No specific input,

the user must just

start the Add a

recipe function

The Available

Ingredients list

must show all the

Ingredients that

are currently

added to

database.

The Available

Ingredients list

shows all the

Ingredients that

are currently

added to

database.

Pass

Case 1.5 Enter an

appropriate

Recipe Name, add

ingredients to the

list with

appropriate

quantities. Then

press the Add to

database button.

 (Enter all inputs

such that none of

the above

exceptions occur)

A dialog box

“Successfully

Added” must be

displayed and the

new recipe must

reflect in the

database.

A dialog box

“Successfully

Added” is

displayed and the

new recipe

reflects in the

database.

Pass

11.2 TEST RESULTS FOR TEST CASE 2

Test case ID

Input for the test Expected result Actual result Pass/Fail

Test case 2.1 Login= Incorrect

 Password=

something

A window

“Incorrect

credentials” must

be shown to the

user and access

must not be

granted.

A window

“Incorrect

credentials” is

shown to the user

and access is not

granted.

Pass

Test case 2.1 Login= Project440

 (Correct name)

A window

“Incorrect

credentials” must

be shown to the

A window

“Incorrect

credentials” is

shown to the user

Pass

94

Password=

Incorrect

user and access

must not be

granted.

and access is not

granted.

Test case 2.1 Login= (blank)

 Password=

(blank)

A window

“Incorrect

credentials” must

be shown to the

user and access

must not be

granted.

A window

“Incorrect

credentials” is

shown to the user

and access is not

granted.

Pass

Test case 2.1 Login= Project440

Password=

inventory

 (correct

password)

Access must be

granted to the

user to the main

interface.

Access is granted

to the user to the

main interface.

Pass

11.3 TEST RESULTS FOR TEST CASE 3
Test case ID

Input for the test Expected result Actual result Pass/Fail

Case 3.1 Ingredient Name

= 123214

Error message

must be

displayed.

Error message is

not displayed

Fail

Case 3.1 Ingredient Name

= (Blank)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.1 Ingredient Name

= Kadai Paneer

(existing

ingredient name)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

95

Case 3.1 Ingredient Name

= $^%$^%

Error message

must be

displayed.

No error

displayed

Fail

Case 3.1 Ingredient Name

= Cucumber

 (non existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input

Pass

Case 3.1 Ingredient Name=

(a really long text,

a paragraph)

An error must be

displayed for too

long name

An error message

is displayed.

Pass

Case 3.2 Threshold Value =

-10

Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 3.2 Threshold Value =

xyz

Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 3.2 Threshold Value =

0

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.2 Threshold Value =

12.4

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.2 Threshold Value = Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.2 Threshold Value =

$# ̂

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

96

Case 3.2 Threshold Value =

15

No error must be

displayed.

No error is

displayed.

Pass

Case 3.2 Threshold Value =

10000

Error must be

displayed.

An error is

displayed and the

user is asked to

enter the

Threshold Value

again.

Pass

Case 3.3 Current Quantity

= -10

Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 3.3 Current Quantity

= xyz

Error message

should be

displayed.

Error message is

displayed and

user is asked to

re-enter the value

Pass

Case 3.3 Current Quantity

= 0

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.3 Current Quantity

= 12.4

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.3 Current Quantity

=

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.3 Current Quantity

= $# ̂

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 3.3 Current Quantity

= 15

No error must be

displayed.

No error is

displayed.

Pass

97

Case 3.3 Current Quantity

=

10000

Error must be

displayed.

An error is

displayed and the

user is asked to

enter the Current

Quantity again.

Pass

Case 3.4 Load the Add

Ingredient Form.

The Vendor drop

down box must

show all the

current vendors

The vendor Drop

down box show

all the current

vendors

Pass

Case 3.5 Load the Add

Ingredient Form

The current

ingredient list

must show list of

all the ingredients

that are in the

database

The Current

ingredient list

shows all the

ingredients that

are in the

database.

Pass

11.4 TEST RESULTS FOR TEST CASE 4
Test case ID

Input for the test Expected result Actual result Pass/Fail

Case 4.1 Vendor Name =

123214

Error message

must be

displayed.

Error message is

not displayed

Fail

Case 4.1 Vendor Name =

(Blank)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 4.1 Vendor Name =

Patel Brothers

(existing vendor

name)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 4.1 Vendor Name =

$^%$^%

Error message

must be

displayed.

No error

displayed

Fail

98

Case 4.1 Vendor Name =

Ghareeb Nawaz

 (non-existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input

Pass

Case 4.1 Vendor Name= (a

really long text -

more than 25

characters)

An error must be

displayed for too

long name

An error message

is displayed.

Pass

Case 4.2 Vendor Type =

123214

Error message

must be

displayed.

Error message is

not displayed

Fail

Case 4.2 Vendor Type =

(Blank)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 4.2 Vendor Type =

Grain (existing

vendor Type)

Error message

must not be

displayed.

Error message is

not displayed.

Pass

Case 4.2 Vendor Type =

$^%$^%

Error message

must be

displayed.

No error

displayed

Fail

Case 4.2 Vendor Type =

Ghareeb Nawaz

 (non-existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input

Pass

Case 4.2 Vendor Name= (a

really long text -

more than 25

characters)

An error must be

displayed for too

long vendor type

An error message

is displayed.

Pass

Case 4.3 Vendor Details =

123214

Error message

must not be

displayed.

Error message is

not displayed

Pass

Case 4.3 Vendor Details =

(Blank)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

99

Case 4.3 Vendor Details =

Patel Brothers,

Devon Street,

Chicago, IL

(Duplicate Details)

Error message

must be

displayed.

Error message is

not displayed.

Fail

Case 4.3 Vendor Details =

$^%$^%

Error message

must be

displayed.

No error

displayed

Fail

Case 4.3 Vendor Details =

Ghareeb Nawaz,

Halsted and

Roosevelt,

Chicago, IL

 (non-existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input

Pass

Case 4.3 Vendor Details= (a

really long text -

more than 25

characters)

An error must not

be displayed for

too long detail

An error message

is not displayed.

Pass

Case 4.4 Vendor Email =

123214

Error message

must be

displayed.

Error message is

not displayed

Fail

Case 4.4 Vendor Email =

(Blank)

Error message

must be

displayed.

Error message is

displayed and

user is asked to

re-enter the

value.

Pass

Case 4.4 Vendor Email =

abc@xyz.com

 (existing email)

Error message

must be

displayed.

Error message is

not displayed.

Fail

Case 4.4 Vendor Email =

$^%$^%

Error message

must be

displayed.

No error message

is displayed.

Fail

Case 4.4 Vendor Email =

pqr@xyz.com

 (non-existing)

No error must be

displayed that

relates to this

input

No error

displayed that

relates to this

input.

Pass

mailto:abc@xyz.com

100

Case 4.4 Vendor Email=

really long email

address - longer

than 25

characters.

An error must be

displayed for too

long email

An error message

is displayed.

Pass

11.5 Test results for test case 5

Test case ID

Input for the test Expected result Actual result Pass/Fail

Case 5.1 Press the check

threshold button

on the interface

The Ingredients

Below threshold

must show the

Ingredients that

are below

threshold level

The Ingredients

Below threshold

shows the

Ingredients that

are below

threshold level

Pass

Case 5.2 Press the Create

Order Button

The user should

be asked to enter

ingredients order

quantity for all

the ingredients

listed in the

Ingredients below

threshold list.

The user is asked

to enter

ingredients order

quantity for all

the ingredients

listed in the

Ingredients below

threshold list.

Pass

Case 5.3 Press the Process

Order Button

A file with all the

order details must

be created in the

project folder

A file with the

details of the

order is created in

the project folder

Pass

	1 PROJECT OVERVIEW
	1.1 The Purpose of the Project
	1.2 Goals of the Project
	1.3 the domain
	1.4 The Client
	1.5 User of the product
	1.6 Objectives and success criteria of the project

	2 System Architecture Overview (Development Environment)
	2.1 FRONT END
	2.2 BACK END
	2.3 Basic Database Relationship Diagram
	2.4 Assignment of responsibilities

	3 Requirements Analysis
	3.1 Functional Requirements
	3.2 Non-functional requirements
	3.3 Use case model
	3.4 Use cases
	3.4.1 Update Resource Database
	3.4.2 Check Threshold Use Case
	3.4.3 Process Order Use Case
	3.4.4 Add Recipe Use Case
	3.4.5 Update Recipe Use Case
	3.4.6 Remove Recipe Use Case
	3.4.7 Add Occasion Use Case
	3.4.8 Update Inventory Use Case
	3.4.9 Correct Inventory Use Case
	3.4.10 Add Vendor Use Case
	3.4.11 Remove Vendor Use Case
	3.4.12 Add Ingredients Use Case

	3.5 Multiplicity and association diagrams
	3.5.1 Multiplicity Diagram
	3.5.2 Association Diagram

	3.6 Dynamic Model
	3.6.1 Update Resource Database Sequence Diagram
	3.6.2 Add Recipe Sequence Diagram
	3.6.3 Remove Recipe Sequence Diagram
	3.6.4 Update Recipe Sequence Diagram
	3.6.5 Add Vendor Sequence Diagram
	3.6.6 Remove Vendor Sequence Diagram
	3.6.7 Update Inventory Sequence Diagram
	3.6.8 Correct Inventory Sequence Diagram
	3.6.9 Add Occasion Sequence Diagram

	4 DETAILED SYSTEM DESIGN
	4.1 Design Goals
	4.2 Subsystem Decomposition
	4.3 Hardware Software Mapping
	4.4 Persistent Data Management
	4.4.1 Persistent Objects
	4.4.2 Storage Strategy

	4.5 Access Control and Security
	4.5.1 Access Matrix

	4.6 Global Software Control
	4.9 Object Design Tradeoffs
	4.10 Interface Documentation Guidelines
	4.11.1 IngredientPackage:
	4.11.2 MiscPackage:
	4.11.3 RecipePackage:

	4.12 Class Interfaces
	4.12.1 Class Ingredient
	4.12.2 Class AddIngredient
	4.12.3 Class Recipe
	4.12.4 Class Vendor
	4.12.5 Class Prediction
	4.12.6 Class AddRecipe
	4.12.7 Class RemoveRecipe
	4.12.8 Class UpdateRecipe
	4.12.9 Class Updates
	4.12.10 Class Occasion
	4.12.11 Class Orders

	5 TESTING
	5.1 Features to be tested/not to be tested
	5.1.1 Features to be tested
	5.1.2 Features not to be tested

	5.2 Pass/Fail Criteria
	5.3 Approach
	5.4 Suspension and resumption
	5.4.1 Suspension
	5.4.2 Resumption

	5.5 Testing materials (hardware/software requirements)
	5.5.1 Software requirements

	5.6 Test Cases
	5.6.1 Test case 1: Testing the Add Recipe Interface and its functioning
	5.6.1.1 Test case specifications for Test case 1: Testing the Add Recipe Interface and its functioning
	5.6.1.2 Preliminary test results for test case 1

	5.6.2 Test case 2: Logging in to the system
	5.6.2.1 Test case specifications for Test case 2: Logging in to the system
	5.6.2.2 Preliminary test results for test case 2

	5.6.3 Test Case 3: Testing the Add Ingredient Interface of the system
	5.6.3.1 Test case specifications for Test case 3: Testing the Add Ingredient Interface of the system
	5.6.3.2 Preliminary test results for test case 3

	5.6.4 Test Case 4: Testing the Add vendor Interface of the system
	5.6.4.1 Test case specification for test case 4: Testing the Add vendor Interface of the system
	5.6.4.2 Preliminary Test Results for test case 4

	5.6.5 Test Case 5: Check Threshold Interface
	5.6.5.1 Test case specification for test Case 5: Check Threshold Interface
	5.6.5.2 Preliminary Test Reports for test case 5

	5.6.6 Test Case 6: Testing the Update after sales interface
	5.6.6.1 Test case specification for test Case 6: Testing the update after sales interface
	5.6.6.2 Preliminary test results for test case 6

	5.6.7 Test Case 7: Testing the Update After receiving interface
	5.6.7.1 Test case specification for Test case 7: Testing the update after receiving interface
	5.6.7.2 Preliminary Test Results for test case 7

	5.7 Component Inspection
	5.7.1 Inspection of Check Threshold
	5.7.1.1 Overview
	5.7.1.2 Preparation
	5.7.1.3 Inspection Meeting
	5.7.1.4 Rework
	5.7.1.5 Follow up

	5.7.2 Inspection of Add Vendor
	5.7.2.1 Overview
	5.7.2.2 Preparation
	5.7.2.3 Inspection Meeting
	5.7.2.4 Rework
	5.7.2.5 Follow up

	6 Conclusion:
	7 Process Improvement:
	8 Future Development
	9 BIBILIOGRAPHIC REFERENCES:
	10 GLOSSARY
	11 Appendix
	11.1 Test Results For Test Case 1
	11.2 Test Results for test case 2
	11.3 Test results for test case 3
	11.4 Test results for test case 4

