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ABSTRACT

I ntroduction

A watchdog timer is a computer hardware timingicevhat triggers a system reset if the
main program, due to some fault condition, suchadsang, neglects to regularly service the
watchdog (writing a “service pulse” to it, alsoeetd to as “petting the dog”). The intention is
to bring the system back from the hung state imtion@al operation. Such a timer has got various
important applications, one of them being in ATMa&i{fomated Teller Machine) which we have

studied and designed in our project.

Stepsinvolved
1. Codingusing VHDL
The key advantage of VHDL when used for systemsgdeis that it allows the

behaviour of the required system to be describextiGied) and verified (simulated) before
synthesis tools translate the design into real viare (gates and wires).n information
theory. To start coding in VHDL, one needs a sirmotatooll. The simulation tool that we
have used here is Xilinx 1SI9.1i.First the requireate for timer circuit was written in
VHDL and simulated so as to obtain the requireghouivaveforms.

2. Burningthe code on Spartan-I1 kit

After the coding was completed, VHDL model is tdated into the "gates and

wires" that are mapped onto a programmable logitcde The programmable logic device

used here is Spartan-2

Experimental work
The above coding and burning methods were contphlate the output was observed on
FPGA kit. The timer code was implemented using VH@hile burning was done using

Spartan-2 Kkit.
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GENERAL INTRODUCTION



Most embedded systems need to be self-reliannadt's usually possible to wait for someone to
reboot them if the software hangs. Some embedd&drie such as space probes, are simply not
accessible to human operators. If their softwarer ehvangs, such systems are permanently
disabled. In other cases, the speed with whichnaamuoperator might reset the system would be
too slow to meet the uptime requirements of thedpch A watchdog timer is a piece of
hardware that can be used ®utomatically detect software anomalies and rebet
processor if any occur. Generally speaking, a whigh timer is based on a counter that counts
down from some initial value to zero. The embedded software selects the
counter's initial value and periodically restattsli the counter ever reaches zero before the
software restarts it, the software is presumed @oralfunctioning and the processor's reset
signal is asserted. The processor (and the embesddiwdare it's running) will be restarted as if
a human operator had cycled the power. The prawfessstarting the watchdog timgrcounter

is sometimes called "kicking the dog."” The appraterivisual metaphor is that of a man being
attacked by a vicious dog. If he keeps kicking dlog, it can't ever bite him. But he must keep
kicking the dog at regular intervals to avoid a ebitSimilarly, the software must
restart the watchdog timer at a regular rate, sk bieing restarted. Watchdog timers may also
trigger control systems to move into a safety stateh as turning off motors, high-voltage
electrical outputs, and other potentially dangersubsystems until the fault is cleared. For
example, a watchdog timer can be implemented witkbd counter in a system working with a
clock signal of y MHz, therefore, the system wilug down if the timer is not reset in a period of
seconds. Watch dog timers have got various impbepplications one of them being in ATMs

which we have studied and designed in our project.
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VHDL



2.1 Introduction

VHDL is a language for describing digital electrosiystems. It arose out of the United States
Government’s Very High Speed Integrated Circuit$iBIC) program, initiated in 1980. In the
course of this program, it became clear that thveas a need for a standard language for
describing the structure and function of integrateduits (ICs). Hence the VHSIC Hardware
Description Language (VHDL) was developed, and sgbently adopted as a standard by the
Institute of Electrical and Electronic EngineelS8EE) in the US.VHDL is designed to fill a
number of needs in the design process. Firstlgiloivs description of the structure of a design
that is how it is decomposed into sub-designs, lamd those sub-designs are interconnected.
Secondly, it allows the specification of the fupatiof designs using familiar programming
language forms. Thirdly, as a result, it allows asign to be simulated before being
manufactured, so that designers can quickly comgléeenatives and test for correctness without
the delay and expense of hardware prototyping. gun@ose of this booklet is to give you a
quick introduction to VHDL.This is done by infornhaldescribing the facilities provided by the
language, and using examples to illustrate thems Bboklet does not fully describe every
aspect of the language. For such fine details, stoauld consult thé EEE Sandard VHDL
Language Reference Manual. However, be warned: the standard is like a ldgaument, and is
very difficult to read unless you are already faanilvith the language. This booklet does cover
enough of the language for substantial model vgitit assumes you know how to write
computer programs using a conventional programrg@nguage such as Pascal, C or Ada. The
remaining chapters of this booklet describe théousraspects of VHDL in a bottom-up manner.
Chapter2 describes the facilities of VHDL which mesemble normal sequential programming
languages. These include data types, variablesregsipns, sequential statements and
subprograms. Then examines the facilities for desey the structure of a module and how it it
decomposed into sub-modules. Then covers asped?iDL that integrate the programming
language features with a discrete event timing ramellow simulation of behaviour. These
facilities are combined to form a complete modeadystem. Then there is a potpourri of more
advanced features which you may find useful for etiodd more complex systems. Throughout
this booklet, the syntax of language features ess@mted in Backus-Naur Form (BNF). The
syntax specifications are drawn from the IEEE VHBtandard. Concrete examples are also
given to illustrate the language features. In scases, some alternatives are omitted from BNF
productions where they are not directly relevarth® context. For this reason, the full syntax is
included in Appendix A, and should be consulted asference.

One should be attentive towards the following pgint

1) The purpose of VHDL.

2) The overall structure of VHDL

3) The VHDL development and execution sequence

4) The VHDL simulation cycle

5) Basic VHDL object types and declarations

6) The syntax and semantics of basic VHDL sequlesttéements

7) The syntax and semantics of basic VHDL concurseatements

8) VHDL modeling techniques for the simulation anéluation of gate-level
digital circuits.
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Figure 1-1. Example of a structural description.

2.2 DescribingStructure

A digital electronic system can be described asaguie with inputs and/or outputs. The
electrical values on the outputs are some funaifdhe values on the inputs. Figurel-1(a) shows
an example of this view of a digital system. Thedumle F has two inputsA and B, and an
outputY.Using VHDL terminology, we call the modufea desigrentity, and the

inputs and outputs are callpdrts. One way of describing the function of a modul®islescribe
how it is composed of sub-modules. Each of theraobules is amnstance of some

entity, and the ports of the instances are condegsengsignals Figurel-1(b) shows how the
entity F might be composed of instances of entiteedd andl. This kind of description is called

a structural description. Note that each of the entittesH and| might also have a structural

description.



2.3 Describing Behaviour

In many cases, it is not appropriate to descrilmodule structurally. One such
case is a module which is at the bottom of theanatry of some other structural description. For
example, if you are designing a system using Ikages bought from an IC shop, you do not
need to describe the internal structure of an rCsuch cases, a description of the function
performed by the module is required, without refieeeto its actual internal structure. Such a
description is called &unctional or behavioral description. To illustrate this, suppose that the
function of the entityF in Figurel-1(a) is the exclusive-or function. Thanbehavioural
description of could be the Boolean function

Y=A.B+A.B

More complex behaviours cannot be described puslp function of inputs. In systems with
feedback, the outputs are also a function of tiMEDL solves this problem by allowing

description of behaviour in the form of an execlégagiyogram.

2.3.1 Discrete Event Time Model

Once the structure and behaviour of a module haee bpecified, it is possible to
simulate the module by executing its behaviouracdption. This is done by simulating the
passage of time in discrete steps. At some sinouldime, a module input may be stimulated by
changing the value on an input port. The moduletseby running the code of its behavioural
description and scheduling new values to be placethe signals connected to its output ports at
some later simulated time. This is called scheduditransaction on that signal. If the new value
is different from the previous value on the sigm@alevent occurs, and other modules with input
ports connected to the signal may be activated.sithalation starts with amitialization phase,
and then proceeds by repeating a two-staigelation cycle. In the initialization phase, all
signals are given initial values, the simulatiandiis set to zero, and each module’s behaviour
program is executed. This usually results in tratisas being scheduled on output signals for
some later time. In the first stage of a simulatoycle, the simulated time is advanced to the
earliest time at which a transaction has been sgbddAll transactions scheduled for that time

are executed, and this may cause events to occwom® signals. In the second stage, all



modules which react to events occurring in thet fssage have their behaviour program
executed. These programs will usually scheduleh&urtransactions on their output signals.
When all of the behaviour programs have finishedcekng, the simulation cycle repeats. If
there are no more scheduled transactions, the vanolgation is completed. The purpose of the
simulation is to gather information about the clemp system state over time. This can be done
by running the simulation under the control dadirmulation monitor. The monitor allows signals
and other state information to be viewed or stared trace file for later analysis. It may also
allow interactive stepping of the simulation pragasauch like an interactive program debugger.

2.3.2 A Quick Example

In this section we will look at a small exampleaof HDL description of a two-bit counter
to give you a feel for the language and how itseds We start the description of an entity by
specifying its external interface, which includedescription of its ports. So the counter might
be defined as:
entity count2 is
generic (prop_delay: Time := 10 ns);
port (clock : in bit;
gl, q0 : out bit);
end count2;
This specifies that the entigpunt2 has one input and two outputs, all of which arevhites,
that is, they can take on the values '0' or 'Hldb defines a generic constant cajhedp_delay
which can be used to control the operation of thitéye(in this case its propagation delay). If no
value is

BIT 0 COUNT2
T_FLIPFLOP
CLOCK 0 Qo
Bl cx a i
B BIT_1
INY T_FLIPFLOP
INVERTER Q1
INV_FFO FF1
L A CK @ —E'El

Figurel-2. Structure of countz.

explicitly given for this value when the entityused in a design, the default value of 10ns will

be used. An implementation of the entity is desilin an architecture body. There may be



more than one architecture body corresponding smgle entity specification, each of which

describes a different view of the entity. Behavaulescription of counter could be written as:

architecture behaviour of count2 is
begin
count_up: process (clock)
variable count_value : natural := 0;
begin
if clock ='1'then
count_value := (count_value + 1) mod 4;
g0 <= bit'val(count_value mod 2) after prop_delay;
gl <= bit'val(count_value / 2) after prop_delay;
end if;
end process count_up;
end behaviour;

This process has a variable calsmlint_value to store the current state of the counter.
The variable is initialized to zero at the start swnulation, and retains its value between
activations of the process. When ttleck input changes from '0' to '1', the state variable i
incremented, and transactions are scheduled amvtheutput ports based on the new value. The
assignments use the generic conspmap_delay to determine how long after the clock change
the transaction should be scheduled. When contathes the end of the process body, the
process is suspended until another change occuctook. The two-bit counter might also be
described as a circuit composed of two T-flip-flgyel an inverter, as shown in Figurel-2. This

can be written in VHDL as:

architecture structure of count2 is
component t_flipflop
port (ck : in bit; q : out bit);
end component;
component inverter
port (a :in bit; y : out bit);
end component;
signal ff0, ff1, inv_ffO : bit;
begin
bit 0 :t flipflop port map (ck => clock, q => ff0);
inv : inverter port map (a => ff0, y => inv_ff0);
bit 1 :t flipflop port map (ck => inv_ff0, q => ff1);
go <= ffO;
gl <= ff1;
end structure;
In this architecture, two component types are dedla flipflop andinverter, and three

internal signals are declared. Each of the compsnisnthen instantiated, and the ports of the
instances are mapped onto signals and ports oériiy. For examplebit_0 is an instance of
thet_flipflop component, with it€k port connected to thelock port of thecount2 entity, and
its g port connected to the internal sigifitll. The last two signal assignments update the entity

ports whenever the values on the internal sigrizsge.
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3.1 What is FPGA?

FPGA stands for Field Programmable Gate Array.i$ a semiconductor device
containing programmable logic components and prograble interconnects. The
programmable logic components can be programmedpbcate the functionality of basic logic
gates such as AND, OR, XOR, NOTor more complex doattmnal functions such as decoders
or simple mathematical functions. In most FPGAgsthprogrammable logic components (or
logic blocks, in FPGA parlance) also include memelgments, which may be simple flip flops

or more complete blocks of memories.

A hierarchy of programmable interconnects allows libgic blocks of an FPGA to be
interconnected as needed by the system designemevdomat like a one-chip
programmablebreadboard. These logic blocks andcmte@ects can be programmed after the
manufacturing process by the customer/designercéheéhe term "field programmable”, i.e.

programmable in the field) so that the FPGA carigoer whatever logical function is needed.

FPGAs are generally slower than their applicatipecsic integrated circuit (ASIC)
counterparts, as they can't handle as complex igrdemnd draw more power. However, they
have several advantages such as a shorter timarte@tability to re-program in the field to fix
bugs, and lower non recurring engineering costscogéndors can sell cheaper, less flexible
versions of their FPGAs which cannot be modifiederafthe design is committed. The
development of these designs is made on regulaiABR@Ed then migrated into a fixed version
that more resembles an ASIC. Complex programmaige Idevices, or CPLDs, are another

alternative.

The typical basic architecture consists of an agfgonfigurable logic blocks (CLBs)
and routing channels. Multiple I/O Pads may fibitthe height of one row or the width of one

column in the array. Generally, all the routing mh@ls have the same width (number of wires).

10



An application circuit must be mapped into an FP@th adequate resources.

The typical FPGA logic block consists of a 4-ingabk-up (LUT), andflip-flop, as

shown below.

N\
2 ——l d-input | s Dty
: J o =|_- ! - B ! Ed vuhr.iui-
o TLook Up A D-Flin 3 /
c— i
— lable Clock L Flop

EACASL X g

[

i:bgicblock

There is

only one output, which can be either tgistered or the unregistered LUT

output. The logic block has four inputs for the Lidmd a clock input. Since clock signals (and

often other high-fanousignals) are normally routed via special-purposelichted routing

networks in commercial FPGAs, they and other sgyaa¢ separately managed.

For this example architecture, the locations of BRGA logic block pins are shown

below.

N3
|

in? ||

ini

ind

aut

out

Logic Block Pin Locations

Each input is accessible from one side of the lbgpck, while the output pin can

connect to routing wires in both the channel tortgbt and the channel below the logic block.
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3.2 Introduction to Spartan-Il
The Spartan-Il 2.5V Field-Programmable Gate Arraynify gives users high

performance, abundant logic resources, and a eatuffe set, all at an exceptionally low price.
The six-member family offers densities ranging fra5000 to 200,000 system gates, as shown
in Table 1. System performance is supported upOtd MHz. Spartan-Il devices deliver more
gates, 1/0s, and features per dollar than otherAdA&y combining advanced process technology
with a streamlined Virtex-based architecture. Festuinclude block RAM (to 56K bits),
distributed RAM (to 75,264 bits), 16 selectable Bandards, and four DLLs. Fast, predictable
interconnect means that successive design itegtiontinue to meet timing requirements. The
Spartan-1l family is a superior alternative to mgs&igrammed ASICs. The FPGA avoids the
initial cost, lengthy development cycles, and imerrisk of conventional ASICs. Also, FPGA
programmability permits design upgrades in thedfwith no hardware replacement necessary
(impossible with ASICS).
Features

Second generation ASIC replacement technology

- Densities as high as 5,292 logic cells with up to

200,000 system gates

- Streamlined features based on Virtex architecture

- Unlimited reprogrammability

- Very low cost

- Advanced 0.18 micron process

» System level features
- SelectRAM+™ hierarchical memory:
- 16 bits/LUT distributed RAM
- Configurable 4K bit block RAM
- Fast interfaces to external RAM

12



- Fully PCI compliant

- Low-power segmented routing architecture

- Full readback ability for verification/observahyl

- Dedicated carry logic for high-speed arithmetic

- Efficient multiplier support

- Cascade chain for wide-input functions

- Abundant registers/latches with enable, settrese

- Four dedicated DLLs for advanced clock control

- Four primary low-skew global clock distributioets

- IEEE 1149.1 compatible boundary scan logic

* Versatile I1/0O and packaging

- Pb-free package options

- Low-cost packages available in all densities

- Family footprint compatibility in common packages

- 16 high-performance interface standards

- Hot swap Compact PCI friendly

- Zero hold time simplifies system timing

* Fully supported by powerful Xilinx developmentssym

- Foundation ISE Series: Fully integrated software

- Alliance Series: For use with third-party tools

- Fully automatic mapping, placement, and routing

Table 1: Spartan-ll FPGA Family Members

CLEBE Maximum Total Total
Logic System Gates Array Total Available | Distributed RAM | Block RAM

Device Cells {Logic and RAM) {RxC)} | CLBs | Userlio® Bits Bits

Xc2s15 432 15,000 Bx12 96 a6 &,144 16K
Xc2s30 a7z 20,000 12x18 216 a2 13,824 24K
NC2550 1,728 50,000 16x% 24 384 176 24 576 32K
HC25100 2,700 100,000 20 % 30 B00 176 38,400 40K
XC23150 3,288 150,000 24 % 36 a64 260 55,296 48K
XC25200 5,202 200,000 28x 42 (1478 284 75,264 Bk

13




3.3 General Overview

The Spartan-Il family of FPGAs have a regular, itidx, programmable architecture of
Configurable Logic Blocks (CLBs), surrounded by eximeter of programmable Input/Output
Blocks (I0Bs). There are four Delay-Locked Loopd4.[B), one at each corner of the die. Two
columns of block RAM lie on opposite sides of the, thetween the CLBs and the 10B columns.
These functional elements are interconnected byowepgul hierarchy of versatile routing
channels Spartan-1l FPGAs are customized by loadofiguration data into internal static
memory cells. Unlimited reprogramming cycles aregilole with this approach. Stored values in
these cells determine logic functions and interemtions implemented in the FPGA.
Configuration data can be read from an externahlsBROM (master serial mode), or written
into the FPGA in slave serial, slave parallel, @uBdary Scan modes. Spartan-l1l FPGAs are
typically used in high-volume applications where tlersatility of a fast programmable solution
adds benefits. Spartan-1l FPGAs are ideal for gmimg product development cycles while
offering a cost-effective solution for high volurpeoduction. Spartan-l1l FPGAs achieve high-
performance, low-cost operation through advancetiwcture and semiconductor technology.
Spartan-1l devices provide system clock rates upO® MHz. Spartan-Il FPGAs offer the most
cost-effective solution while maintaining leadingige performance. In addition to the
conventional benefits of high-volume programmaldgid solutions, Spartan-Il FPGAs also
offer on-chip synchronous single-port and dual-g®#&M (block and distributed form), DLL
clock drivers, programmable set and reset on giHlibps, fast carry logic, and many other

features.

14
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Figure 1: Basic Spartan-ll Family FPGA Block Diagram

Spartan-1l Product Avaibility

Table 2 shows the maximum user I/Os available endiévice and the number of user
I/Os available for each device/package combinatidre four global clock pins are usable as
additional user I/Os when not used as a globalkgdc. These pins are not included in user I/O

counts.
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Table 2= Spartan-ll User VO Chart()

Available User I/0 According to Package Type
Maximum V100 TQ144 Cs144 PQ208 FG256 FG456
Device User 11O VQG100 TQG144 CsG144 PQG208 FGG256 FGG456
XC2815 8e &0 BE (Note 2)
XC2s30 92 &0 o2 92 (Mote 2) -
XC2850 176 - o2 - 140 176
XC25100 176 - a2 - 140 176 (Note 2)
XC25150 260 - - - 140 176 280
XC25200 284 - - - 140 176 284

Ordering Information

Spartan-1l devices are available in both standard and Pb-free packaging options for all
device/package combinations. The

Pb-free packages include a special "G" character in the ordering code.
Standard Packaging

Example: XC2550 6 PQ 208 C
Device Type_—l_ T— Temperature Ranga
Spead Grade Murnbear of Fins
Package Type

DE0T7.1_0a 72204

Pb-Free Packaging
Example: XC2550 6 PQ G 208 C

Device Typa Temperature Range
Speed Grade Mumber of Pins
Packane Type Pb-free

16




Device Part Marking

$7 X|LINx®
SPARTAN®
Davie Typa . xc2ss0™ Cate Coda
Package POZ0SAFPOD2E

A11342804 = Lot Coda
Speci
iarating Ranga

Sample packags wih part marking
Tor XC2550-6PO20RC,
ded -1 0 4G

3.4 Architectural Description

The Spartan-Il user-programmable gate array, showingure 1  is composed
of five major configurable elements:
* |IOBs provide the interface between the package pi
and the internal logic
» CLBs provide the functional elements for consting
most logic
» Dedicated block RAM memories of 4096 bits each
* Clock DLLs for clock-distribution delay compeniseat
and clock domain control

 Versatile multi-level interconnect structure

17



As can be seen in Figure 1, form the central Isgigcture with easy access to all support
and routing structures. The IOBs are located aralhtthe logic and memory elements for easy
and quick routing of signals on and off the chigliés stored in static memory cells control all
the configurable logic elements and interconnesbuieces. These values load into the memory
cells on power-up, and can reload if necessarhamge the function of the device. Each of these

elements will be discussed in detail in the follogvsections.

INPUT/OUTPUT BLOCK

The Spartan-Il IOB, as seen in Figure 1, featungsits and outputs that support a wide
variety of 1/0 signaling standards. These high-dpgaeputs and outputs are capable of supporting
various state of the art memory and bus interfatable 1 lists several of the standards which
are supported along with the required referencgutland termination voltages needed to meet
the standard.The three IOB registers function eitdee edge-triggered D-type flip-flops or as
level-sensitive latches. Each IOB has a clock 3ig6aK) shared by the three registersd
independent Clock Enable(CE) for each register. In addition to the CLK and CE control signalsg th
three registers share a Set/Reset (SR). For eagbtere this signal can be independently
configured as a synchronous Set, a synchronoust,Rase asynchronous Preset, or an
asynchronous Clear. A feature not shown in thekotbagram, but controlled by the software, is
polarity control. The input and output buffers aidof the IOB control signals have independent
polarity controls. Optional pull-up and pull-dowesistors and an optional weak-keeper circuit
are attached to each pad. Prior to configuratibroatiputs not involved in configuration are
forced into their high-impedance state. The pulivdaesistors and the weak-keeper circuits are

inactive, but inputs may optionally be pulled up.

18
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Figure 1: Spartan-ll InputfOutput Block (10B)

35 Processes Involved
The sequence of steps necessary to configure Spartigvices can be divided

into three different phases.

* Initiating Configuration

 Configuration memory clear

 Loading data frames

* Start-up

These can be represented in the form of a flowtéhdhe following manner:
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Initiating Configuration

There are two different ways to initiate the coofg@fion process:
applying power to the device or asserting the PRA8MRnput. Configuration on power-up
occurs automatically unless it is delayed by ther,uas described in a separate section below.
The waveform for configuration on power-up is shown Figure 11, page 13. Before
configuration can begin, VCCO Bank 2 must be gretitan 1.0V. Furthermore, all VCCINT
power pins must be connected to a 2.5Vsupply. Farermformation on delaying configuration,
see Clearing Configuration Memory. Once in userrafpen, the device can be re-configured
simply by pulling the PROGRAM pin Low. The devicekaowledges the beginning of the

configuration process by driving DONE Low, thenesstthe memory-clearing phase.

Clearing Configuration Mode

The device indicates that clearing the configuratmemory is in progress by driving
INIT Low. At this time, the user can delay configtion by holding either PROGRAM or INIT
Low, which causes the device to remain in the mgmdearing phase. Note that the
bidirectional INIT line is driving a Low logic leVeduring memory clearing. Thus, to avoid
contention, use an open-drain driver to keep INAwL With no delay in force, the device
indicates that the memory is completely clear biyidg INIT High. The FPGA samples its

mode pins on this Low-to-High transition.

Loading Configuration Data

Once INIT is High, the user can begin loading cgumfation data frames into the device.
The details of loading the configuration data alisecussed in the sections treating the
configuration modes individually. The sequence pérations necessary to load configuration

data using the serial modes is shown in figure.
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CRR Error Checking

During the loading of configuration data, a CRCueaémbedded in the configuration file
is checked against a CRC value calculated witrerRRGA. If the CRC values do not match, the
FPGA drives INIT Low to indicate that a frame erh@s occurred and configuration is aborted.
To reconfigure the device, the PROGRAM pin shouiddsserted to reset the configuration
logic. Recycling power also resets the FPGA forfigomation.

Start Up

The start-up sequence oversees the transitioredfFRIGA from the configuration state to
full user operation. A match of CRC values, indiegita successful loading of the configuration
data, initiates the sequence. During start-updéwece performs four operations:
1. The assertion of DONE. The failure of DONE to igmh may indicate the unsuccessful
loading of configuration data.
2. The release of the Global Three State net. atlivates 1/Os to which signals are assigned.
The remaining 1/0Os stay in a high-impedance staitt \wmternal weak pull-down resistors
present.
3. Negates Global Set Reset (GSR). This allowBigdflops to change state.
4. The assertion of Global Write Enable (GWE). Talisws all RAMs and flip-flops to change

State.
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By default, these operations are synchronized tbkCThe entire start-up sequence lasts
eight cycles, called CO-C7, after which the loadedign is fully functional. The default timing
for start-up is shown in the top half of figure.€elfour operations can be selected to switch on
any CCLK cycle C1-C6 through settings in the XiliDevelopment Software. Heavy lines show
default settings. The bottom half of figureshowstaer commonly used version of the start-up
timing known as Sync-to-DONE. This version makeg B8BTS, GSR, and GWE events
conditional upon the DONE pin going High. This tigiis important for a daisy chain of
multiple FPGAs in serial mode, since it ensures HiaBFPGAs go through start-up together,
after all their DONE pins have gone High. Sync-toHEBE timing is selected by setting the GTS,
GSR, and GWE cycles to a value of DONE in the gurftion options. This causes these
signals to transition one clock cycle after DONEeemally transitions high.

Default Cycles

cone __ [T T T 1]
s T [T L]
cen LI T 11
GWE | | | | | I

Sync to DONE

Startup CLK ||||||||||||||||||
Phase BEHEB8680E

DioME High _|||

oone [T T T ]

GTS

GER

GEWE

EESCOH _13_0a0a00

Start-Up Waveforms
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Chapter 4

WATCHDOG TIMER AND
IT'S APPLICATION IN ATM



4.1 Introduction

Today, microcontrollers are being used in harshrenments where electrical noise
and electromagnetic interference (EMI) are abundargnvironments like this, it is beneficial if
the system contains resources to help ensure pogeation. In many systems, a commonly
used technique for verifying proper operation is thcorporation of a watchdog timer. A
watchdog timer is fundamentally a time measuringaethat is used in conjunction with, or as
part of, a microprocessor and is capable of causiagnicroprocessor to be reset. In a properly
designed system, the watchdog will cause a resenwhe microprocessor is not operating
correctly, thereby eliminating the faulty conditidn a typical application, the watchdog timer is
configured to reset the processor after a predatedrtime interval. If the processor is operating
correctly, it will restart the watchdog before taed of the interval. After being restarted, the
watchdog will begin timing another predetermineteimal. If the watchdog is not restarted by
the processor before the end of the interval, echaitg timeout occurs. This results in the
processor being reset. If the system software bas designed correctly, and there has been no
hardware failure, the reset will cause the systeroperate properly again. Of course, the reset
condition must be a safe state. For instance, itldvoot be wise to have the reset state of a disk
drive controller enabling the write head. Many sys$ have been designed using an external
watchdog timer. The need for this additional exaémomponent is eliminated, however, with
the DS80C320. The DS80C320 contains its own, vapable internal watchdog timer. The

features and the use of this watchdog timer arsubgct of this application note.

Watchdog timers may be more complex, attemptingaee debug information onto a
persistent medium; i.e. information useful for dg@pug the problem that caused the fault. In
this case a second, simpler, watchdog timer endbedsif the first watchdog timer does not
report completion of its information saving taskhim a certain amount of time, the system will
reset with or without the information saved. Thesmoommon use of watchdog timers is in

embedded systems, where this specialized timdtda a built-in unit of a microcontroller.
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Watchdog timers may also trigger control systemstwve into a safety state, such as
turning off motors, high-voltage electrical outpuésid other potentially dangerous subsystems
until the fault is cleared.

For example, a watchdog timer can be implementddl wix-bit counter in a system
working with a clock signal of y MHz, therefore etlsystem will shut down if the timer is not

oz
y - 108

reset in a period o seconds.

4.2General Use of Watchdog Timer

The primary application of a watchdog timer is asyatem monitor (as discussed in
detail in the section below). With a watchdog tifreesystem can be designed to be very good at
detecting and correcting an out-of-control micra@ssor. A system using a watchdog timer is
particularly well suited to detecting bit errorsoMentary bit errors can be caused by such things
as soft memory failures and electromagnetic digg®rinto memory devices and their
interfaces. These can cause temporary bit polfigiying of data into and out of the processor.
When this occurs while fetching program informatitime microprocessor will begin executing
erroneous code. Potentially, the processor coufiinbexecuting operands instead of op-codes.
When the processor begins executing this bad dodell not properly execute the code that
restarts the watchdog. After the timeout interttaé, watchdog will cause a processor reset. In a
properly designed system, the reset will correetdiror. Regardless of how capable a watchdog
timer might be, it cannot resolve all reliabilitysues. There are certain failures that cannot be
corrected by a reset. For instance, a watchdog toawenot prevent the corruption of data. In its
basic form, the watchdog restart is dependent opgrprogram execution, and generally, does
not depend on the values in data memory. Unlessigioon of data affects program flow or
some extra measures are taken, data corruptiomutilcause a watchdog timeout. Of course,
self diagnostic software can be written in such ayvas to make restarting the watchdog
contingent on verification of data memory. Whilesthpproach can be very effective and is quite
common, it is beyond the scope of this documenigouss in detail.
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Also note that a watchdog timer cannot detect & fastantaneously. By definition, the
watchdog timer must reach the end of a predetednimae interval before it resets the
processor. This fact explains why a minimum possiiheout interval should be selected. In this

way, a minimum amount of time expires before anajttontrol condition is corrected.

The Watchdog as a System Supervisor

The most common use of the High-Speed Micro's vemightimer is as a system
supervisor. While it can be used in a number ded#int ways, some of which will be discussed
in this document, system supervisor is the mostreomapplication. In system supervisor mode,
the timer is restarted periodically by the processodescribed above. If the processor runs out
of control, the watchdog will not be restartedwitl timeout, and subsequently will cause the
processor to be reset.

In the High-Speed Micro, the watchdog timer is dn\by the main system clock that is
supplied to a series of dividers. The divider ottuselectable, and determines the interval
between timeouts. When the timeout is reachedntemrupt flag will be set, and if enabled, a
reset will occur 512 clocks later. The interrupagflwill cause an interrupt to occur if its
individual enable bit is set and the global intptrenable is set. The reset and interrupt are
completely discrete functions that may be acknogéedor ignored, together or separately for
various applications.

When using the watchdog timer as a system monita, watchdog’'s reset function
should be used. If the interrupt function were ydsbe purpose of the watchdog would be
defeated. To explain, assume the system is exgcetmant code prior to the watchdog interrupt.
The interrupt would temporarily force the systenclbanto control by vectoring the CPU to the
interrupt service routine. Restarting the watchdad exiting by an RETI or RET would return
the processor to the lost position prior to therintpt. By using the watchdog reset function, the
processor is restarted from the beginning of tlog@am, and thereby placed into a known state.

This is not to say that the DS80C320 watchdog'sript function is not useful for the
system monitor application. Since the reset ocbBsclocks after the interrupt, a short interrupt
service routine can be used to store critical \embefore the reset occurs. This may allow the
system to return to proper operation in a statertt@e closely resembles the conditions before

the failure. Of course, if the data is the sourche error, storing it without correction would be
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of no benefit. For any specific system, the appno@ken is a function of the system and the
level of reliability required.

As mentioned above, the watchdog timer in the is driven by the main system
clock that is passed through a series of divideng. divider output may be selected by the user,
allowing a timeout of 217, 220, 223, or 226 clodknabled, a reset of the processor will occur

512 clocks later. Table 1 shows the reset timervate associated with different crystal

frequencies.

DS80C320 WATCHDOG RESET TIME INTERVALS Table 1
CLOCK @].832 MHz @11.059 MHz @l MHz @15 MHz
21" +512 71.83 ms 11.90 ms 10.97 ms 5.26 ms
2+512 572.6 ms 94.86 ms 87.42 ms 41.96 ms
274512 4585 7586 ms 6991 ms 335.6 ms
2%+ 512 36.635 6.075 5595 2685

As can be seen, there is a range of timeout ineraa@ailable. The interval selected
should be based on several issues. The first oigeist to select an interval that represents the
maximum time the processor can be allowed to runobweontrol. For example, a system that
issues a position command to a robotic arm evefy llliseconds ideally would not use a
timeout interval greater than this. Keeping theetmt interval shorter ensures that there will be

at most one bad command issued to the arm.

The other primary concern in setting the watchdingout interval is the ability to locate
the restart commands within the system softwards T™an be a very complicated issue,
depending on the nature of the system software.nibe desirable approach is to have a single
location within a single main loop of the systenftware that restarts the watchdog timer. The
time required to pass through the main program ladlp determine the required timeout

interval.

The above approach assumes that the system sofftmarés linear enough to allow it.

Some programs are too convoluted and their flolwasnon-linear to allow this approach. With a
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program structure like that, it is difficult to late the correct points for watchdog restarts. One
possible solution to this problem is to use the OS®0’s watchdog timer itself to assist in
determining the appropriate restart locations. Tiisthod uses the watchdog's interrupt
capability and is described in detail in a sechetow.

In some systems, the software is too complex optbgram flow is too variable to allow
a complete and thorough analysis. It may be imptess$d determine that all program paths have
been covered by a watchdog restart. In this caddfeaent approach may be used. In this case,
diagnostic software may be developed to test teeery. This diagnostic software will be called
at periodic intervals, perhaps using the interfepture of the watchdog timer. If the diagnostics
pass, the watchdog is restarted. If not, the watghitmes out and the processor is reset. Of
course in this case, the test must be thoroughgimtmube effective. The exact approach used in
a given system may be any of the above or some ioatndn of each, as appropriate for the

application.

WATCHDOG RESET EXAMPLE

A short program illustrating most of the basic wakog timer functions is shown below.
This program illustrates how to initialize the wadog timer so that when it times out, it will
cause a reset. The program illustrates one of 8800320 watchdog timer’'s unique features.
Software that changes the watchdog’s operation prrédbrm a timed access operation. A timed
access operation is a sequence of steps that mestdeuted together in sequence; otherwise the
access fails. The example program shows the tinomgsa being used for restarting the
watchdog and enabling its reset. As can be seenydlue OAAh is first written to the timed
access register (TA). Next, the value 055h is emitio the TA register. Finally, the protected bit
is modified. These instructions must be executethénsequence shown with no interruption to
gain access to the protected bit. Further detailsirned access operation may be found in the
High-Speed Micro User’'s Guide. The watchdog timiés that are protected by the timed access
procedure are the Enable Watchdog Timer Reset (EEWWVDCON.1) bit, the Watchdog
Interrupt Flag (WDIF = WDCON.3) bit, and the Restafatchdog Timer (RWT = WDCON.0)
bit.
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WD_RST.ASM Program

This program demonstrates the use of the watchdueg tn

; the DS80C320. It uses the timer’s reset capgbllithen

; running, the program sets port 1's pins low ticate

; the processor is idle waiting for the watchdogineeout. When
; the watchdog times out, the processor is resedicg the port

; pins to return high. A delay is written into theogram so that
; the port pins will be high long enough to be séeattached to
; LEDs.

rhkkkkhkkhkkhkkhkhkhkkhkhkkhkhkhkkhkkhhkkhkkhkkhkkk*k *khkkkkhkkkhk*k*%
Reset Vector

ORG 00h

SIMP START

CE I S S I S I I S I I i b i I *kkkkhkkkhk*k*%
Main program body

ORG 080h

START: ORL CKCON, #080h ; Set Watchdog timeout per2**23
: (approximately 758 mS @ 11.059 MHz)

In a real application, the next three lines wowdpbaced

; at various locations in the program to restagtwitatchdog

; before it times out.

MOV TA, #0AAh ; Restart Watchdog timer
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MOV TA, #055h ; using timed

SETB RWT ; access.

MOV TA, #0AAh ; Enable Watchdog timer reset

MOV TA, #055h ; using timed

SETB EWT ; access.

MOV R1, #0FFh ; Create a delay loop so the port
LOOP: MOV R2, #0FFh ; pins are high long enougkraft
DJINZ R2, $ ; areset to be seen.

DJNZ R1, LOOP

MOV P1, #00 ; P1 =0, Reset causes P1 =1

MOV PCON, #01h ; Go to idle mode waiting for reset
SIMP $

rhkkkhkkhkAhkhkhkAhkhkAhkkhkhkhkkhkkkhkkhkkkkhkkk*k *kkkkk*kkkx*k %

END

4.3THE WATCHDOG TIMER AS A LONG INTERVAL TIMER

A slightly different application of the High-Speddicro’s watchdog timer is as a long

interval timer. In this application, the interruist enabled using the Enable Watchdog Timer
Interrupt (EWDI=EIE.4) bit and the reset is leftsabled. When the timeout occurs, the
Watchdog Timer will set the WDIF bit (WDCON.3), aath interrupt will occur if the global

interrupt enable bit (EA=IE.7) is set. The Watchdioigrrupt Flag will indicate the source of the

interrupt and must be cleared by software. As shiovihe table above, intervals from 5.26 ms to

2.68 seconds are available with a 25 MHz crysthis Tnterval is significantly longer than any

possible using the standard 16-bit timers. Anotsieort program illustrating features of the

watchdog timer is shown below. This program dematst how the watchdog timer and
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interrupts must be initialized so that a timeoutises an interrupt. A short interrupt service

routine is included.

EE I e S S S I S I S S I R *kkkkhkkkhkk*k*k
’

WD_INT.ASM Program

This program demonstrates the use of the watchdueeg df
APPLICATION NOTE 80

5o0f 6

; the 80C320. It uses the timer’s interrupt genegatapability.

; For purposes of demonstration, the program teggtat 1's pins
; each time the watchdog’s Interrupt Service Rautientered.
$MODS320

CE I S S I S S I S S S S S S S *khkkkkhkkkkk*k*%
Reset Vector

ORG 00h

SIMP START

CE I S S I S S I S S I S S i S *khkkkkhkkkhk*k*%
Watchdog Interrupt Vector

ORG 063h

MOV TA, #0AAh ; Restart watchdog timer

MOV TA, #055h ; using timed

SETB RWT ; access.
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MOV TA, #0AAh ; Clear watchdog interrupt flag

MOV TA, #055h ; using timed

CLR WDIF ; access.

CPL A ; Complement port 1 to show the

MOV P1, A ; interrupt routine was entered.

RETI ; Return from interrupt.
rhkkkkhkkhkAhkhkhkkhkhkhkkhkhkhkkhkkkhkkhkkkkhkkkk *kkkkk*kkkx*k %
Main program body

ORG 080h

START:

ORL CKCON, #040h ; Set Watchdog timeout period Z¥*2

; (@approximately 94.8 mS @ 11.059 MHz)

MOV TA, #0AAh ; Restart Watchdog timer

MOV TA, #055h ; using timed

SETB RWT ; access.

SETB EWDI ; Enable Watchdog Interrupt and

SETB EA ; set global interrupt enable

Here: MOV PCON, #01 ; Go to Idle mode and wait

SJMP Here ; After interrupt, go back to idle
rhkkkkhkkhkAhkhkhkAhkhkAhkkhkhkhkkhkkkhkkhkkkkhkkkk *k kkkk*kkkx*k %

END
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THE WATCHDOG TIMER AS AN AID IN LOCATING RESTART
INSTRUCTIONS

As discussed above, locating the watchdog restattuctions in the system software can
sometimes be difficult. The structure of the systemfiware and the complexity of its flow
determine the task’s level of difficulty. In the B8@C320, the watchdog timer itself can be used
to assist in this activity. The general approachtfos is to allow the watchdog to cause an
interrupt and, from within the service routine, etetine where in the code the interrupt
occurred. By placing the watchdog restart instandiprior to this point you can be assured that
the watchdog will be restarted before the timeautgn the software flow follows this particular
branch). This process is repeated until no morehuaaiy interrupts occur. If the program flow is
linear and not data-dependent, the system will ttancas desired. The previous software
example provides most of the software necessargetform this function. As a first step,
however, the desired maximum timeout interval stidnd determined and the code modified for
this value. As always, the timeout selected isretion of the system and how long the micro an
be allowed to run out of control. After modifyiniget software to initialize the desired watchdog
timeout interval, the following instructions shoub@ added to the Interrupt Service Routine.
They will cause the processor to display the addddsthe instruction that would have been
executed if the interrupt had not occurred. If tilisplay mechanism is not convenient for the
system implementation, the address can be convert&&ClIl and output on one of the serial
ports.

MOV RO, SP ; Get SP contents

MOV P3, @RO ; Display high address byte

DEC RO ; Point to low address byte

MOV P1, @RO ; Display low address byte

SIMP $ ; Stop here

The instructions above move the contents of thekSeainter to RO, which is then used
to point to the data pushed onto the stack wherinffeerupt was acknowledged. This address
reflects the next instruction that would have berecuted if the interrupt had not occurred. The
high byte of the address is displayed on Port 3,@nd the low byte of the address is displayed
on Port 1 pins. If instructions to restart the Viagliog timer are placed before this address, the

watchdog will never reach timeout.
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4.4 APPLICATION OF WATCHDOG TIMER IN ATMs

An automated teller machine or automatic teller mae (ATM) is a computerized
telecommunications device that provides a finanasstitution's customers a method of financial
transactions in a public space without the neeéfouman clerk or bank teller. On most modern
ATMs, the customer identifies him or herself byartehng a plastic ATM card with a magnetic
stripe or a plastic smartcard with a chip, thattaors his or her card number and some security
information, such as an expiration date or CVC (QVSecurity is provided by the customer

entering a personal identification number (PIN).

A major issue related with ATMs is that relatedtsotiming control.That is what happens
if a person enters his card and doesn’t enter alye?????Won't it be a test of patience for the
customers standing in the long queue??? Here thehday timer comes to the rescue. The
system waits for pre defined time period and #xteeds that time period without any input to
it,then it indicates that using some indicator. Tindicator remains high as long as there is no
input.And once some input comes, the timer is reset the indicator is turned off.Normal

operation can resume after that.
So, watchdog timer is indeed a very useful compbaged has got its application ranging

over various fields. Its application in ATMs is osech field which we have studied and

designed as a part of our project.
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Chapter 5

EXPERIMENTATION & RESULTS
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5.1 Coding
The code is written in VHDL. The simulator usedXginx and the FPGA used is
Spartan-Il,about which we have already discussegrévious chapters.The experiment can be

classified into the following stages:-

» Getting acquainted with VHDIThe various knowledge required for operating VHDL

like knowing about its syntax, architecture compuseetc. was studied and practiced by

performing simpler examples.

* Learning the required circuit§he various circuits of timers,counters etc waglisil

from various digital books and rough diagram of ¢iveuit was prepared.

» Writing the program cod& hen the required code for the timer was writteimg VHDL

and its errors were checked for.

» Simulating the code using xilinkhen using xilinx simulator, the written code was

simulated .The various errors and warning werertal@e of.And finally the test bench

waveform was obtained and studied.

* Burning the code on FPGAhen the code was burned using the Spartan-Il kit a

various necessary methods were carried out tilgetethe required output on the FPGA

board.
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5.2 Source Code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,

entity testclk is

Port (
clkin: in STD_LOGIC; --------- the clk of FPGA
reset : in STD_LOGIC;----------- the reset
exin : in std_logic;---------- the input to thestgm
msg : out std_logic;---------- the output signallack of input
clkout : out STD_LOGIC );-------------- diveedd clk
end testclk;

architecture Behavioral of testclk is

signal toggle : std_logic :='0";

signal xu : std_logic_vector(22 downto 0);

begin
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process(clkin,reset,exin)
begin
if reset = '1' then

Xu <= (others =>"'0");

clkout <="1"%

elsif rising_edge(clkin) then

XU <= Xu+1;

if exin ="1"then

Xu <= (others =>"0");

msg <= '0';--resettin the output

end if;

ifexin="'0"and xu="111111111111111111111thEh
msg <= '1";--settin the interrupt

end if;
if (xu="1111111111121111121111111") then
toggle <= not toggle;--for toglin the clk out
clkout <= toggle;
Xu <= (others =>"0");
end if;
end if;

end process;

end Behavioral;

clear all;
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6.3 Conclusion
We successfully designed a timer for ATM applicatemd observed its output, both as

test bench waveform and on Spartan-II kit.
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