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Face Detection 
Gary Chern, Paul Gurney, and Jared Starman 

1.  Introduction 
Automatic face detection is a complex problem in image processing.  Many methods exist to solve this 
problem such as template matching, Fisher Linear Discriminant, Neural Networks, SVM, and MRC.  
Success has been achieved with each method to varying degrees and complexities.   
 
The assignment given to us was to develop an algorithm capable of locating each face in a color image of 
the class.  We were given seven training images along with the corresponding ground truth data to develop 
and train our algorithms on.  The end result for our group was an algorithm capable of finding over 95% of 
the faces in all but one image in approximately 30 seconds.  In addition, we are able to successfully locate 
one of the females in two test images. 
 

2.  Our Algorithm 
Figure 1 shows the face detection algorithm that we developed. 
 

 
 
The Color Based Mask Generation will be discussed in Section 3, Region Finding and Separation in 
Section 4, the MRC Algorithm in Section 5, and the End Processing in Section 6. 
 
 
 
 

Color Based Mask Generation 

Region Finding and Separation 

Maximal Rejection Classifier (MRC) Algorithm applied to Potential Faces 

End Processing (Duplicate Rejection and Gender Recognition) 

Input Image 

Figure 1:  Block Diagram of our Face Detection Algorithm 
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3.  Color-based Mask Generation 
We would like to reduce the number of locations in the image that need to be searched for faces.  Color-
based mask generation picks out the pixels which are most likely to be faces which can then be searched 
using more advanced techniques. 
 
The first step in our algorithm is to assign the probability of being a face to every pixel in the image.  We 
begin by using the training set to determine the distribution in RGB-space of the face pixels and the 
background pixels.  Figure 2 shows the bounding regions for face pixels and background pixels based on 
the training images.  (Note that the RGB values range from 0 to 63 in Figure to reduce the amount of 
memory required). 
 
 

 
 
 
 
 
The simplest option for face detection would be to find only those pixels which are contained in the 
bounding region for face pixels.  However, there is a noticeable overlap between the face pixels region and 
the background pixels region. 
 
 
If we take transverse slices of the 3d plot shown above, we get Figure3 which shows the distribution of face 
pixels (red), background pixels (green), and where they overlap (yellow).  We would like to assign a high 
probability of being a face pixel to pixels which reside in the red region, a medium probability to those 
which reside in the yellow region, and a low probability to those which lie in the green/black regions. 

Figure 2:  3-D space spanned by Face and Non-face RGB color vectors 
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For each location in RGB space, we use the following formula to calculate the associated probability of 
being a face: 
 
Probability = (# of face pixels) / (# of face pixels + (# of background pixels) ^ weight) 
 
The weight is used to compensate for the fact that there are many more background pixels than face pixels 
in the training images.  It also provides a simple way to bias the function towards finding or rejecting 
background pixels.  For example, a low weight will assign a higher probability to face pixels also in the 
background region, but will also cause pixels in the background to have a higher probability.  Weight 
values of 0.6 to 0.8 were found to work quite well. 
 
Figure 4 shows transverse slices through the resulting 3-dimensional probability function.  For every RGB 
value, we can assign a probability between 0 and 1.  This pdf is then smoothed by a 3-d box kernel in order 
to reduce sensitivity to specific lighting conditions.  Fortunately, this pdf can be computed once and then 
just loaded from a file.   

Figure 3: Transverse slices through 3-D Color RGB color space show in Fig. 2 
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Using this probability function, we look up the probability value for every pixel in the given image.  Figure 
5 shows the results of this operation: 
 

 
 
 

Figure 4: Transverse slices through 3-D probability function for a given specific image 

Figure 5: Image showing the probability that a given pixel is a Face-Pixel.  White is 
higher probability. 
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Clearly, the faces are assigned high probabilities, while the background is assigned medium to low 
probabilities.  We can now exploit the high spatial coherence of the faces, by convolving with ovals 
approximately the same size of a face.  Convolving with an oval followed by thresholding results in the 
mask shown in Figure 6. 
 
 

 
 
 
 
 
 
At this point, we have created a mask which reduces the number of pixels which must be searched for faces 
by at least an order of magnitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Mask that results from filtering probability image in Figure 5 with an oval.  The 
result is then thresholded to get the above mask. 
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4.  Region Finding and Separation 
4.1  Region Finding: 
Once we have a mask showing potential faces, we need to split this mask up into regions which can be 
searched for faces.  After some very basic erosion and hole-filling steps, most of the faces are nicely 
contained in a single contiguous set of pixels.   These sets can easily be found and labeled.  Unfortunately, 
some contiguous regions contain more than one face.  Ideally, these regions could be separated so that the 
more advanced algorithms need only output a yes/no answer rather than counting the number of faces in a 
region. 
 
Figure 7 shows an example of such a region which requires separation.  While it may seem possible to 
separate these regions by further erosion, over-erosion causes some of the smaller or obstructed faces to 
disppear entirely.  Therefore, we need a better way of separating connected regions into single face-shaped 
regions. 
 

 
 
 
 
 
4.2  Region Separating 
The fundamental problem is that the faces come in such different sizes.  Some faces are very large and 
include necks, while other are obstructed or are very small. 
 
We use the following algorithm to separate the regions: 
 
1. Convolve the mask with a large head-and-neck shaped template (examples are shown in Figure 8) 

Figure 7: Example of several connected faces in the mask image, even after performing 
erosion and dilation to separate. 
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2. Find the peak value resulting from the convolution, and subtract a dilated version of the template from 
the location of the peak value. 

3. Repeat steps 1 and 2 until the peak value falls below a certain threshold 
4. Repeat steps 1 to 3 with smaller and smaller head-and-neck shaped templates. 
 
 

 
 
 
 
 
This algorithm sequentially removes the head shapes from the mask until there are none remaining.  It uses 
templates of many sizes and is therefore insensitive to size differences in the heads, and because it removes 
large heads first, it results in very few “double detections”.  
 
Adjusting the thresholds downward results in more false-detections (i.e. more hands, arms, etc…), but also 
results in better detection of obstructed faces.   Ideally, algorithms later in the chain would be capable of 
rejecting the false-detections. 
 
Figure 9 shows the results of this region separation algorithm.  It detects both large and small heads, and in 
this particular case results in a perfect score, even before doing any actual face detection. 
 

 

Figure 8: Three different sizes of our “head-and-neck” shaped template consist of an 
oval as the head and a square as the neck.  

Figure 9: Results of the Region Separation Algorithm.  Note for this example that all 
faces were properly segmented. 
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5.  Maximum Rejection Classification 
The reader is referred to [1] for the detailed theory behind MRC and its application to face detection.  The 
lectures and slides given by Michael Elad in class [2] were also helpful to our understanding of MRC.  In 
this section we will describe the basic details of MRC and our implementation of it for this project. 
 
5.1  Theory-Training: 
We are given two sets, the non-face image set {Yk} and  the face image set {Xk}.  The non-face image set 
is assumed to be much larger than the face set.  The images are assumed to be gray-value images.  The 
images can be projected onto a one-dimensional line by a kernel θ, which is easily found from the image set 
statistics  The projection of the face set will occupy a certain range d1 and d2 on the line, while the 
projection of the non-face set will occupy another range (hopefully much larger).  The goal of this 
projection is to minimize the number of non-face images projected onto the [d1,d2] range.  This eliminates 
as many non-face images as possible while keeping all the face images.  The remaining images (complete 
face set and non-face images that weren’t rejected) are then used to find another θ to project onto, where a 
new [d1,d2] is found to reject as many non-faces as possible.  The iterations are repeated and more θ’s are 
found until practically all of the non-face images have been eliminated. 
 
The calculation of θ is very simple and only requires finding the mean (Mx and My) and covariance 
matrices (Rx and Ry) of each image set: 
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The objective function can be written as 
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The goal is to maximize the above function, which has the effect of maximizing the distance between the 
PDFs of the face set and non-face set.  Taking the derivative of the objective function and setting to zero 
we find: 

θλθ RxRyRxMMMM T
yxyx =++−− }]][{[  

 
This equation is of the form θλθ QR = , which is a generalized eigenvalue problem.  θ is then the 
eigenvector that corresponds to the largest eigenvalue. 
 
5.2  Theory-Detecting Faces: 
Once an adequate number of θ’s and their corresponding [d1,d2] ranges have been found (for our algorithm 
we acquired 10 θ’s), we apply the kernels to a test image to find faces.  The basic idea is to go through the 
image taking consecutive blocks of a certain size (same as all the data set images).  The first θ is applied to 
the block, and we check if the projection falls within the specified [d1,d2] range.  If it does, then we apply 
the second θ and check if the projection falls within the corresponding [d1,d2].  As long as the block keeps 
satisfying the [d1,d2] range for each kernel, we apply the next θ.  If we run through all the kernels and the 
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block satisfies every one, the block is classified as a face.  If for any θ the block falls outside the “face” 
range, the block is discarded and classified as non-face.  This is done for every block in the image.  The key 
here is that we must work with multiple resolutions of the image.  Since the training data is of a certain size 
(say 15x15), it is geared to find faces that are of the same size.  In a given image, the faces could be of all 
different sizes, so faces will be found on different resolutions of the input image.  Elad recommends 
working with resolution ratios of 1:1.2. 
 
5.3  Implementation Details: 
We chose a block size of 15x15 for our training data as recommended in [1].  We gathered the face set 
from the seven provided training images.  We selected each face in Matlab using a program we wrote 
which had the user click on the face in the training set; the program would then cut the face off from just 
above the eyebrows to just above the chin and resize the face to 15x15.  We assumed that the forehead and 
chin area probably wouldn’t add much information to a face; most of the detail is in the eyes, nose and 
mouth.  From the training images we gathered 164 faces.  We then flipped each one across the vertical axis 
to generate 164 more faces for a total of 328 faces.  In order to represent a larger range of faces, we 
performed a procedure called regularization, adding a value of I2σ (with 20=σ ) to the face covariance 
matrix [3].   
 
We gathered our non-face images from Training Image 4 (masked with the ground truth data to get rid of 
the faces).  We wrote a program that went through the image and took successive blocks as non-face 
images.  We then went to a lower resolution and repeated the same process.  We actually started with an 
image that was one-third resolution of the original and then went through five additional lower resolution 
versions to generate our data set.  The reason we started with a lower resolution image is that faces in the 
training images were all at least 50x50 pixels, so when finding faces we probably wouldn’t start looking for 
faces until we down-sampled the input image by at least three (since our face images are only of size 
15x15).  Thus we only care about non-face images that are on the same scale.  We were able to generate 
618,988 non-face images.  Ideally we would want our non-face image set to be as large as possible to cover 
every possible case of a non-face.  However, generating these non-face sets took a long time in Matlab, and 
an even bigger problem was storing the images.  It wasn’t practical to generate a matrix to store every 
image, so we kept track of blocks by their positions in the training image. 
 
There were a couple of very helpful pre-processing procedures that we performed on the input blocks 
before classifying them as face/non-face.  The first was removal of the mean from the block.  This 
processing helped to deal with different skin colors and lighting on faces.  The second procedure was 
masking out some of the pixels in the input block, namely the bottom left and right corners.  This removed 
some of the background pixels that could be found in the face block.  It turns out that these procedures can 
be applied to the kernel itself instead of each block, thereby saving innumerable calculations.   
 
5.4  Advantages and Disadvantages 
One of the advantages of MRC is that it uses simple (and therefore fast) classifiers.  The classifiers are 
weak so we need to use many of them, but this isn’t a problem because each runs through the algorithm 
quickly.  MRC is simple to implement once the classifiers and thresholds have been acquired.  It is also 
very accurate. 
 
One problem with MRC is that if given a very large input image, traversing it with 15x15 blocks at several 
resolutions could take a long amount of time.  Another logistical problem lies in combining the results from 
multiple resolutions.  If you find a face on one resolution, then find it again on another resolution, how to 
know if you found a new face or if it’s the same one?  This problem is actually not difficult to solve.  The 
biggest problem with MRC is that it obviously will have some false detections.  However, when we 
combined MRC with the color segmentation/region finding algorithm we were able to severely cut down 
on these false detections 
 
5.5  Integration of MRC and Color Segmentation/Region Finding: 
We use color segmentation/region finding (from now on referred to as just color segmentation) to segment 
the input image into different blocks; the color segmentation algorithm “claims” each selected block as 
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having one face.  We then take each of these selected blocks and perform MRC to determine if there really 
is a face in the block or maybe it’s just a flesh-colored orange.  The MRC works with the block in five 
different resolutions to find a face; once it finds a face in the block at a certain resolution, it stops and labels 
the block as a face.  It then moves on to the next block selected by color segmentation and does the same 
thing until all the selected blocks have been processed. 
 
The benefits of integrating MRC and color segmentation are numerous.  Doing color segmentation then 
MRC saves time because the MRC algorithm no longer has to go through every successive block in the 
input image.  Instead it only has to go through the 30 or so blocks (assuming 20-25 faces in image) 
identified by the color segmentation.  Another advantage is that MRC can get rid of false detections from 
the color segmenting.  A flesh colored shirt that is segmented looks nothing like a face to MRC and is 
eliminated.  We don’t have to worry about MRC false detections since the color segmenting gets rid of so 
much of the input image, decreasing the chances of a false detection (that would have occurred if MRC had 
to traverse the entire image).  Yet another benefit is that now we don’t have to worry about finding the 
same face at multiple resolutions.  We know that there’s either one face or no faces in the selected block.  
So once we find a face, there’s no need to continue processing at lower resolutions, so we can continue 
with the next color-segmented block.  The input blocks into the MRC algorithm never contained more than 
one face for the test images we ran, so we don’t have to worry about multiple faces per block. 
The only real problem with this integration is that sometimes there really is a face in the block that color 
segmentation identifies, but MRC fails to find it.  This often occurs if the face is partially obstructed or 
severely rotated.  However, we were willing to not find these rare cases in order to avoid the false 
detections that MRC alone or color segmentation alone would have detected. 
 
Figure 10 below shows the input color-segmented and region separated images that are input to the MRC 
algorithm.  Figure 11 shows the output of the MRC algorithm.  The missing images (at locations (2,3), 
(6,2), and (6,3) are not present in the output) are those that MRC did NOT classify those as faces.  This was 
a perfect detection image. 
 

 
 
 
 
 

Figure 10: Example of face candidates passed from Region Separating Algorithm to 
the MRC algorithm.  Note the non-faces at positions (2,3), (6,2), and (6,3) 
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6.  End Processing 
After the MRC algorithm makes the final face selection, we perform two more steps in our algorithm.   
 
First, we take the results of the MRC and if two faces are too close together, we eliminate the second face.  
We found that the previous steps of our algorithm can sometimes double count certain faces, and that this 
technique successfully eliminated those extra faces. 
 
Second, we tag each face that the MRC algorithm finds with its average Value (from HSV color space).  
Instead of doing gender recognition, we only search for one specific female in the set of detected faces.  
The face with the lowest Value from HSV space is labeled as a female.  One of the three females in the 
class has much darker skin than anyone else, so she usually has the lowest average Value in HSV color 
space, depending on lighting conditions.  
 
 

7.  Other Methods Considered 
Before settling on a final algorithm we also considered template matching as a simpler approach to the 
MRC algorithm.  We created a template by averaging together all the faces across all seven training 
images.  Prior to averaging the faces together we normalized the distance between the eyes so that each 
face was approximately the same size and features such as the eyes, nose, and mouth lined up.  Our 
template can be seen in Figure 12 below. 

Figure 11: Output of our MRC Algorithm.  Note the non-faces from Figure 10 have 
been removed, but nothing else has been.  This is perfect detection. 
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Using a single template to try to match faces from the output of the region finding and separation step 
actually gave lower scores than doing nothing.  To improve upon this we scaled the template to several 
different resolutions, which gave much better results than before.  However, there were still several false 
positives and negatives in each image.  Other improvements that we made included constraining the peak 
of the correlation to be near the center of the input image.  Also, if template matching produced results that 
didn’t have a well-defined peak but instead just a large high-valued area, we discarded those results too.  
High-valued correlations without a well-defined central peak were typically due to arms, necks, or other 
non-faces. 
 
 

8.  Results 
Testing our algorithm on each of the training images provided to us gives the results as seen in Table 1. 
 
 
 

Image 
# 

#Faces Detected #Faces in Image Percentage 
Correct 

# Repeated Faces 
and False Positives 

Bonus 

1 20 21 95% 0 1 
2 23 24 96% 0 1 
3 25 25 100% 0 0 
4 23 24 96% 0 0 
5 21 24 88% 0 0 
6 23 24 96% 0 0 
7 22 22 100% 0 0 

 
 
As can be seen from the table, our algorithm performs quite well.  Two images have a 100% face detection 
rate, while all but one image have above a 95% face detection rate.  Also of note is that we have no 
repeated faces or false positives in any of the training images.  Furthermore, we were able to correctly 
identify one female in two of the test images. 
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Figure 12: Template made from averaging all faces in test images 

Table1: Results from running each test image through our algorithm 



 13

10.  References 
 
[1] Michael Elad, Yacov Hel-Or, Renato Keshet, “Rejection Based Classifier for Face Detection”, Hewlett 
Packard Laboratories, Israel, Pattern Recognition Letters, April 2001. 
[2] Michael Elad, EE368 Lecture, 19 May 2003 and 21 May 2003. 
[3] Frederic Sarrat, “Rejection-based Linear Classifier”, Spring 2002 EE 368 Project Report. 
 
Other: 
Gonzalez and Woods, Digital Image Processing, Prentice Hall, New Jersey, 2002. 
 


